Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

Philipp Comanns, Christian Effertz, Florian Hischen, Konrad Staudt, Wolfgang Böhme and Werner Baumgartner
Beilstein J. Nanotechnol. 2011, 2, 204–214. https://doi.org/10.3762/bjnano.2.24

Supporting Information

Supporting Information File 1: Application of a 5 µl droplet of deionised water onto the venter of Moloch horridus.
Format: MPEG Size: 438.0 KB Download
Supporting Information File 2: Application of a 5 µl droplet of deionised water onto the back of Phrynocephalus arabicus.
Format: MPEG Size: 324.0 KB Download
Supporting Information File 3: Application of a 5 µl droplet of deionised water onto the back of Phrynosoma cornutum.
Format: MPEG Size: 420.0 KB Download
Supporting Information File 4: SEM-image of Moloch horridus and the corresponding epoxy replica. Clearly the general morphology as well as the honeycomb-like micro ornamentation are well reproduced.
Format: TIF Size: 535.3 KB Download
Supporting Information File 5: Application of 5 µl of deionised water onto a epoxy replica of the back of Phrynosoma cornutum.
Format: MPEG Size: 428.0 KB Download
Supporting Information File 6: Application of 5 µl deionised water onto the flat back side of the same replica as used in File 6.
Format: MPEG Size: 470.0 KB Download
Supporting Information File 7: Application of a 7 µl droplet of coloured deionised water onto the venter of Moloch horridus.
Format: MPEG Size: 1.3 MB Download
Supporting Information File 8: Application of a 7 µl droplet of coloured deionised water onto the back of Phrynocephalus arabicus.
Format: MPEG Size: 1.1 MB Download
Supporting Information File 9: Application of a 7 µl droplet of coloured deionised water onto the back of Phrynosoma cornutum.
Format: MPEG Size: 1.8 MB Download
Supporting Information File 10: Semi-thin histological sections through the integument of Phrynosoma cornutum. Black: spaces of the capillary system, due to overlapping scales. Different dimensions and wall morphologies can be observed.
Format: TIF Size: 274.2 KB Download

Cite the Following Article

Moisture harvesting and water transport through specialized micro-structures on the integument of lizards
Philipp Comanns, Christian Effertz, Florian Hischen, Konrad Staudt, Wolfgang Böhme and Werner Baumgartner
Beilstein J. Nanotechnol. 2011, 2, 204–214. https://doi.org/10.3762/bjnano.2.24

How to Cite

Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Beilstein J. Nanotechnol. 2011, 2, 204–214. doi:10.3762/bjnano.2.24

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, B.; Ramírez-Gómez, Á.; Wang, J.; Yuan, L. Bionic design of knitted fabrics for ice and snow sports. Textile Research Journal 2024. doi:10.1177/00405175241228526
  • Trogadas, P.; Cho, J. I. S.; Rasha, L.; Lu, X.; Kardjilov, N.; Markötter, H.; Manke, I.; Shearing, P. R.; Brett, D. J. L.; Coppens, M.-O. A nature-inspired solution for water management in flow fields for electrochemical devices. Energy & Environmental Science 2024. doi:10.1039/d3ee03666a
  • Wang, M.; Liu, E.; Jin, T.; Zafar, S.-U.; Mei, X.; Fauconnier, M.-L.; De Clerck, C. Towards a better understanding of atmospheric water harvesting (AWH) technology. Water research 2023, 250, 121052. doi:10.1016/j.watres.2023.121052
  • Li, Y.; Jing, L.; Little, J. M.; Yang, H.; Chung, T.-C.; Chen, P.-Y. Mechanically driven assembly of biomimetic 2D-material microtextures with bioinspired multifunctionality. Nano Research 2023, 17, 663–678. doi:10.1007/s12274-023-6220-y
  • Zhang, W.; Ji, Q.; Zhang, G.; Gu, Z.; Wang, H.; Hu, C.; Liu, H.; Ren, Z. J.; Qu, J. Pumping and sliding of droplets steered by a hydrogel pattern for atmospheric water harvesting. National science review 2023, 10, nwad334. doi:10.1093/nsr/nwad334
  • Yenmiş, M.; Ayaz, D.; Sherbrooke, W. C.; Veselý, M. Comparative analyses of micro‐ and macro‐scale surface structures in the convergent evolution of rain‐harvesting behaviour in lizards. Journal of Zoology 2023, 322, 58–75. doi:10.1111/jzo.13123
  • Ahmad, M.; Nighojkar, A.; Plappally, A. A review of the methods of harvesting atmospheric moisture. Environmental science and pollution research international 2023, 31, 10395–10416. doi:10.1007/s11356-023-30727-x
  • Yang, J.-L.; Song, Y.-Y.; Zhang, X.; Zhang, Z.-Q.; Cheng, G.-G.; Liu, Y.; Lv, G.-J.; Ding, J.-N. Research progress of bionic fog collection surfaces based on special structures from natural organisms. RSC advances 2023, 13, 27839–27864. doi:10.1039/d3ra04253g
  • Lu, Y.; Yan, D.; Lin, J.; Zhang, S.; Song, J. Spontaneous Directional Transportation Surface of Water Droplet and Gas Bubble: A Review. Applied Sciences 2023, 13, 9961. doi:10.3390/app13179961
  • Do, Y.; Ko, M.; Lee, Y. K. Impact of surface cooling on the water harvesting efficiency of nanostructured window glass. RSC advances 2023, 13, 22325–22334. doi:10.1039/d3ra03433j
  • Rostami, S.; Ghaffarkhah, A.; Isari, A. A.; Hashemi, S. A.; Arjmand, M. 2D nanomaterial aerogels integrated with phase change materials: a comprehensive review. Materials Advances 2023, 4, 2698–2729. doi:10.1039/d3ma00049d
  • Liu, Y.; Hanati, A.; Lan, H. Characterization of leaf trichomes and their influence on surface wettability of Salsola ferganica, an annual halophyte in the desert. Physiologia plantarum 2023, 175, e13905. doi:10.1111/ppl.13905
  • Feldmann, D.; Pinchasik, B.-E. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities. Journal of colloid and interface science 2023, 644, 146–156. doi:10.1016/j.jcis.2023.04.060
  • Li, J.; Han, X.; Li, W.; Yang, L.; Li, X.; Wang, L. Nature-inspired reentrant surfaces. Progress in Materials Science 2023, 133, 101064. doi:10.1016/j.pmatsci.2022.101064
  • Balachandran, A.; Parayilkalapurackal, H.; Rajpoot, S.; Lone, S. Bioinspired Green Fabricating Design of Multidimensional Surfaces for Atmospheric Water Harvesting. ACS applied bio materials 2022, 6, 44–63. doi:10.1021/acsabm.2c00804
  • Zhou, H.; Niu, H.; Wang, H.; Lin, T. Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chemical reviews 2022, 123, 663–700. doi:10.1021/acs.chemrev.2c00486
  • He, G.; Zhang, C.; Dong, Z. Survival in desert: Extreme water adaptations and bioinspired structural designs. iScience 2022, 26, 105819. doi:10.1016/j.isci.2022.105819
  • Foday, E. H.; Sesay, T.; Koroma, E. B.; Kanneh, A. A. G. S.; Chineche, E. B.; Jalloh, A. Y.; Koroma, J. M. Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency. Biomimetics (Basel, Switzerland) 2022, 7, 147. doi:10.3390/biomimetics7040147
  • Gentile, V.; Bozlar, M.; Meggers, F.; Simonetti, M. Liter-scale atmospheric water harvesting for dry climates driven by low temperature solar heat. Energy 2022, 254, 124295. doi:10.1016/j.energy.2022.124295
  • Sherbrooke, W. C.; Aguilar-Morales, C.; Villanueva-Gutierrez, N. L.; Van Devender, T. R. RAIN-HARVEST DRINKING BY PHRYNOSOMA DITMARSI IN SONORA, MEXICO. The Southwestern Naturalist 2022, 67. doi:10.1894/0038-4909-67.2.149

Patents

  • COMANNS PHILIPP; BAUMGARTNER WERNER PROF; BERNHARDT FRANK; WINANDS KAI; ARNTZ KRISTIAN. DEVICE FOR CAPILLARY TRANSPORT OF LIQUIDS, USE AND METHOD OF THE PRODUCTION OF SUCH A DEVICE. EP 2880314 B1, Sept 28, 2016.
Other Beilstein-Institut Open Science Activities