Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

Anna J. Schulte, Damian M. Droste, Kerstin Koch and Wilhelm Barthlott
Beilstein J. Nanotechnol. 2011, 2, 228–236. https://doi.org/10.3762/bjnano.2.27

Supporting Information

Supporting Information File 1: Additional figures.
Format: PDF Size: 262.7 KB Download

Cite the Following Article

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials
Anna J. Schulte, Damian M. Droste, Kerstin Koch and Wilhelm Barthlott
Beilstein J. Nanotechnol. 2011, 2, 228–236. https://doi.org/10.3762/bjnano.2.27

How to Cite

Schulte, A. J.; Droste, D. M.; Koch, K.; Barthlott, W. Beilstein J. Nanotechnol. 2011, 2, 228–236. doi:10.3762/bjnano.2.27

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Piedrahita, C. R.; Baba, K.; Quintana, R.; Bardon, J.; Choquet, P. Superhydrophobicity of direct plasma synthesized and deposited thin films: Effect of chemical-induced and substrate roughness. Applied Surface Science 2024, 659, 159700. doi:10.1016/j.apsusc.2024.159700
  • Wang, H. Beneficial medicinal effects and material applications of rose. Heliyon 2023, 10, e23530. doi:10.1016/j.heliyon.2023.e23530
  • Gao, Y. Wetting behaviors of water on nano-/micro-structured surfaces. SCIENTIA SINICA Chimica 2023, 54, 73–84. doi:10.1360/ssc-2023-0194
  • Rendon Piedrahita, C.; Choquet, P.; Quintana, R.; Baba, K.; Bardon, J. Influence of Surface Roughness on the Wettability of Plasma Polymers Deposited Via Atmospheric Pressure Plasma: An All-Plasma Approach to Achieve Superhydrophobicity. Elsevier BV 2023. doi:10.2139/ssrn.4618124
  • Zhu, M.; Huang, L.; Zhang, B.; Chen, S.; Zhang, H.; Zhang, X.; Li, D.; Yao, Y.; Peng, Z.; Chen, S.; Cao, D. Recent progress in optimal design of superhydrophobic surfaces. APL Materials 2022, 10. doi:10.1063/5.0096796
  • Peng, J.; Wu, L.; Zhang, H.; Wang, B.; Si, Y.; Jin, S.; Zhu, H. Research progress on eco-friendly superhydrophobic materials in environment, energy and biology. Chemical communications (Cambridge, England) 2022, 58, 11201–11219. doi:10.1039/d2cc03899d
  • Mattaparthi, S.; Sablaniya, D.; Rajendran, S.; Singh, A. K.; Kalpathy, S. K.; Rowthu, S. Non-toxic self-cleaning large area cement blocks fabrication by biomimicking superhydrophobic periwinkle flowers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 647, 129112. doi:10.1016/j.colsurfa.2022.129112
  • Shin, S.; Choi, S. H.; Baasanmunkh, S.; Kim, S.; Choi, H. J.; Cho, Y. T. Micro-replication platform for studying the structural effect of seed surfaces on wetting properties. Scientific reports 2022, 12, 5607. doi:10.1038/s41598-022-09634-7
  • Baales, J.; Zeisler-Diehl, V.; Malkowsky, Y.; Schreiber, L. Interaction of surfactants with barley leaf surfaces: time-dependent recovery of contact angles is due to foliar uptake of surfactants. Planta 2021, 255, 1–11. doi:10.1007/s00425-021-03785-z
  • Lenz, A.-K.; Bauer, U.; Ruxton, G. D. An ecological perspective on water shedding from leaves. Journal of experimental botany 2021, 73, 1176–1189. doi:10.1093/jxb/erab479
  • Huang, L.; Yao, Y.; Peng, Z.; Zhang, B.; Chen, S. One-level microstructure-arrayed hydrophobic surface with low surface adhesion and strong anti-wetting function. Journal of physics. Condensed matter : an Institute of Physics journal 2021, 33, 505002. doi:10.1088/1361-648x/ac2929
  • Liu, X.; Trosseille, J.; Mongruel, A.; Marty, F.; Basset, P.; Laurent, J.; Royon, L.; Cui, T.; Beysens, D.; Bourouina, T. Tailoring silicon for dew water harvesting panels. iScience 2021, 24, 102814. doi:10.1016/j.isci.2021.102814
  • Saubade, F.; Pilkington, L. I.; Liauw, C. M.; Gomes, L. C.; McClements, J.; Peeters, M.; Mohtadi, M. E.; Mergulhão, F.; Whitehead, K. A. Principal Component Analysis to Determine the Surface Properties That Influence the Self-Cleaning Action of Hydrophobic Plant Leaves. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 8177–8189. doi:10.1021/acs.langmuir.1c00853
  • Gao, Y.; Liu, Y.; Jiang, J.; Zhu, C.; Zuhlke, C.; Alexander, D. R.; Francisco, J. S.; Zeng, X. C. Multiple Wetting-Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. JACS Au 2021, 1, 955–966. doi:10.1021/jacsau.1c00183
  • Skrzydeł, J.; Borowska-Wykręt, D.; Kwiatkowska, D. Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. International journal of molecular sciences 2021, 22, 4160. doi:10.3390/ijms22084160
  • Lichade, K. M.; Jiang, Y.; Pan, Y. Hierarchical Nano/Micro-Structured Surfaces With High Surface Area/Volume Ratios. Journal of Manufacturing Science and Engineering 2021, 143. doi:10.1115/1.4049850
  • Lantada, A. D.; Franco-Martínez, F.; Hengsbach, S.; Rupp, F.; Thelen, R.; Bade, K. Artificial Intelligence Aided Design of Microtextured Surfaces: Application to Controlling Wettability. Nanomaterials (Basel, Switzerland) 2020, 10, 2287. doi:10.3390/nano10112287
  • Wang, L.; Zhang, S.; Li, S.; Yan, S.; Dong, S. Inner surface of Nepenthes slippery zone: ratchet effect of lunate cells causes anisotropic superhydrophobicity. Royal Society open science 2020, 7, 200066. doi:10.1098/rsos.200066
  • Yang, C.; Huang, X.; Jin, Q.; Yang, C.; Liu, D.; Li, X.; Zhou, L.; Li, J.; Zhang, T.; Xia, D.; Manrong, L.; Xie, X.; Chen, H.-J. Anomalous dispersion of bioinspired flower-like microparticles for oil/water separation. Nanotechnology 2019, 31, 095712. doi:10.1088/1361-6528/ab5888
  • Watanabe-Taneda, A.; Taneda, H. Interspecific variations in the surface wettability and morphological traits of petals across 125 plant species. Flora 2019, 257, 151417. doi:10.1016/j.flora.2019.151417

Patents

  • NATARAJAN SRIRAM; HAMMER JOSEPH J; COOPER KEVIN; VYAKARNAM MURTY; LOW HONG YEE; RODRIGUEZ ISABEL; LIM CHEE TIONG; HO AUDREY YOKE YEE. Adhesive structure with tissue piercing protrusions on its surface. US 10278701 B2, May 7, 2019.
  • LUONG-VAN EMMA KIM; RODRIGUEZ ISABEL; LOW HONG YEE; ELMOUELHI NOHA; COOPER KEVIN; NATARAJAN SRIRAM; VYAKARNAM MURTY N; LIM CHEE TIONG. Super-hydrophilic structures. US 9492952 B2, Nov 15, 2016.
  • NATARAJAN SRIRAM; HAMMER JOSEPH; COOPER KEVIN; VYAKARNAM MURTY; LOW HONG YEE; RODRIGUEZ ISABEL; LIM CHEE TIONG; HO AUDREY YOKE YEE. Adhesive structure with stiff protrusions on adhesive surface. US 9211176 B2, Dec 15, 2015.
  • LUONG-VAN EMMA KIM; RODRIGUEZ ISABEL; LOW HONG YEE; HO AUDREY YOKE YEE; NATARAJAN SRIRAM; ELMOUELHI NOHA; COOPER KEVIN; VYAKARNAM MURTY; LIM CHEE TIONG. Blood clotting substrate and medical device. US 8969648 B2, March 3, 2015.
  • HO AUDREY YOKE YEE; RODRIGUEZ ISABEL; LOW HONG YEE; LUONG-VAN EMMA KIM; NATARAJAN SRIRAM; ELMOUELHI NOHA; COOPER KEVIN; LIM CHEE TIONG. Super-hydrophobic hierarchical structures, method of forming them and medical devices incorporating them. US 8926881 B2, Jan 6, 2015.
Other Beilstein-Institut Open Science Activities