Improvement of the oxidation stability of cobalt nanoparticles

Celin Dobbrow and Annette M. Schmidt
Beilstein J. Nanotechnol. 2012, 3, 75–81. https://doi.org/10.3762/bjnano.3.9

Supporting Information

Supporting Information File 1: Magnetic properties of particle preparations and experimental section.
Format: PDF Size: 151.4 KB Download

Cite the Following Article

Improvement of the oxidation stability of cobalt nanoparticles
Celin Dobbrow and Annette M. Schmidt
Beilstein J. Nanotechnol. 2012, 3, 75–81. https://doi.org/10.3762/bjnano.3.9

How to Cite

Dobbrow, C.; Schmidt, A. M. Beilstein J. Nanotechnol. 2012, 3, 75–81. doi:10.3762/bjnano.3.9

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zayed, M. F.; Eisa, W. H.; Anis, B. Garlic peel as promising low-cost support for the cobalt nanocatalyst; synthesis and catalytic studies. Journal of environmental management 2022, 312, 114919. doi:10.1016/j.jenvman.2022.114919
  • Farkaš, B.; Terranova, U.; de Leeuw, N. H. The mechanism underlying the functionalisation of cobalt nanoparticles by carboxylic acids: a first-principles computational study. Journal of materials chemistry. B 2021, 9, 4915–4928. doi:10.1039/d0tb02928a
  • Muzzi, B.; Albino, M.; Innocenti, C.; Petrecca, M.; Cortigiani, B.; de Julián Fernández, C.; Bertoni, G.; Fernández-Pacheco, R.; Ibarra, A.; Marquina, C.; Ibarra, M. R.; Sangregorio, C. Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product. Nanoscale 2020, 12, 14076–14086. doi:10.1039/d0nr01361g
  • Fratalocchi, L.; Groppi, G.; Visconti, C. G.; Lietti, L.; Tronconi, E. On the passivation of platinum promoted cobalt-based Fischer-Tropsch catalyst. Catalysis Today 2020, 342, 79–87. doi:10.1016/j.cattod.2019.02.069
  • Petrarca, C.; Poma, A.; Vecchiotti, G.; Bernardini, G.; Niu, Q.; Cattaneo, A. G.; Di Gioacchino, M.; Sabbioni, E. Cobalt magnetic nanoparticles as theranostics: Conceivable or forgettable?. Nanotechnology Reviews 2020, 9, 1522–1538. doi:10.1515/ntrev-2020-0111
  • Kundu, S.; Majumder, R.; Ghosh, R.; Pradhan, M.; Roy, S.; Singha, P.; Ghosh, D.; Banerjee, A.; Banerjee, D.; Chowdhury, M. P. Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. Journal of Materials Science 2019, 55, 3884–3901. doi:10.1007/s10853-019-04276-z
  • Turksen-Selcuk, S.; Rosu, C.; Blake, A.; Soto-Cantu, E.; Qiu, J.; Wu, Y.; Ditusa, J.; Steffens, A.; Russo, P. S. Organophilic, Superparamagnetic, and Reversibly Thermoresponsive Silica-Polypeptide Core-Shell Particles. Langmuir : the ACS journal of surfaces and colloids 2019, 35, 14248–14257. doi:10.1021/acs.langmuir.9b01931
  • NaderiNasrabadi, M.; Bateni, F.; Chen, Z.; de B. Harrington, P.; Staser, J. A. Biomass-Depolarized Electrolysis. Journal of The Electrochemical Society 2019, 166, E317–E322. doi:10.1149/2.1471910jes
  • Ishizaki, T.; Yatsugi, K.; Akedo, K. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force. Journal of Nanoparticle Research 2018, 20, 1–14. doi:10.1007/s11051-018-4206-6
  • Kumari, P.; Kumar, S.; Gupta, S.; Mishra, A.; Kumar, A. Efficacious and Selective Oxidation of Atrazine with Hydrogen Peroxide Catalyzed by Magnetite Nanoparticles: Influence of Reaction Media. ChemistrySelect 2018, 3, 2135–2139. doi:10.1002/slct.201703117
  • Weeber, R.; Hermes, M.; Schmidt, A. M.; Holm, C. Polymer architecture of magnetic gels: a review. Journal of physics. Condensed matter : an Institute of Physics journal 2018, 30, 063002. doi:10.1088/1361-648x/aaa344
  • Mandal, S.; Chaudhuri, K. Magnetic Core-Shell Nanoparticles for Biomedical Applications. Complex Magnetic Nanostructures; Springer International Publishing, 2017; pp 425–453. doi:10.1007/978-3-319-52087-2_12
  • Delgado, J. A.; Claver, C.; Castillón, S.; Curulla-Ferré, D.; Godard, C. Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts. Nanomaterials (Basel, Switzerland) 2017, 7, 58. doi:10.3390/nano7030058
  • Wolf, M.; Fischer, N.; Claeys, M. Effectiveness of catalyst passivation techniques studied in situ with a magnetometer. Catalysis Today 2016, 275, 135–140. doi:10.1016/j.cattod.2016.05.003
  • Delgado, J. A.; Claver, C.; Castillón, S.; Curulla-Ferré, D.; Ordomsky, V. V.; Godard, C. Effect of polymeric stabilizers on Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles supported on TiO2. Journal of Molecular Catalysis A: Chemical 2016, 417, 43–52. doi:10.1016/j.molcata.2016.02.029
  • Li, X.; Zhang, L.-P.; Tan, R. P.; Fazzini, P.-F.; Hungria, T.; Durand, J.; Lachaize, S.; Sun, W.-H.; Respaud, M.; Soulantica, K.; Serp, P. Isoprene Polymerization on Iron Nanoparticles Confined in Carbon Nanotubes. Chemistry (Weinheim an der Bergstrasse, Germany) 2015, 21, 17437–17444. doi:10.1002/chem.201501165
  • Esterina, R.; Liu, X. M.; Adeyeye, A. O.; Ross, C. A.; Choi, W. K. Solid-state dewetting of magnetic binary multilayer thin films. Journal of Applied Physics 2015, 118, 144902. doi:10.1063/1.4932565
  • Kim, J. Y.; Jaworski, J. Amphiphilic coatings on cobalt boride nanocatalysts for stability in hydrogen generation applications. Macromolecular Research 2015, 23, 223–226. doi:10.1007/s13233-015-3048-7
  • Roeben, E.; Roeder, L.; Teusch, S.; Effertz, M.; Deiters, U. K.; Schmidt, A. M. Magnetic particle nanorheology. Colloid and Polymer Science 2014, 292, 2013–2023. doi:10.1007/s00396-014-3289-6
  • Sakharov, V. K.; Booth, R.; Majetich, S. A. High-frequency permeability of Ni and Co particle assemblies. Journal of Applied Physics 2014, 115. doi:10.1063/1.4866234
Other Beilstein-Institut Open Science Activities