A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

Alexander N. Obraztsov, Victor I. Kleshch and Elena A. Smolnikova
Beilstein J. Nanotechnol. 2013, 4, 493–500. https://doi.org/10.3762/bjnano.4.58

Cite the Following Article

A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source
Alexander N. Obraztsov, Victor I. Kleshch and Elena A. Smolnikova
Beilstein J. Nanotechnol. 2013, 4, 493–500. https://doi.org/10.3762/bjnano.4.58

How to Cite

Obraztsov, A. N.; Kleshch, V. I.; Smolnikova, E. A. Beilstein J. Nanotechnol. 2013, 4, 493–500. doi:10.3762/bjnano.4.58

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kleshch, V. I.; Ismagilov, R. R.; Mukhin, V. V.; Orekhov, A. S.; Filatyev, A. S.; Obraztsov, A. N. Nano-graphite field-emission cathode for space electric propulsion systems. Nanotechnology 2022, 33, 415201. doi:10.1088/1361-6528/ac7def
  • Serbun, P.; Porshyn, V.; Müller, G.; Lützenkirchen-Hecht, D. Advanced field emission measurement techniques for research on modern cold cathode materials and their applications for transmission-type x-ray sources. The Review of scientific instruments 2020, 91, 083906. doi:10.1063/5.0018225
  • Eidel’man, E. D.; Arkhipov, A. V. Field emission from carbon nanostructures: models and experiment. Physics-Uspekhi 2020, 63, 648–667. doi:10.3367/ufne.2019.06.038576
  • Zonov, R. G.; Mikheev, G. M.; Obraztsov, A. N.; Svirko, Y. P. Circular photocurrent in the carbon nanowall film. Optics letters 2020, 45, 2022–2025. doi:10.1364/ol.391528
  • He, Q.; Luo, H.; Chen, L.; Dong, J.; Chen, K.; Ning, Y. Nanographite‐based fluorescent biosensor for detecting microRNA using duplex‐specific nuclease‐assisted recycling. Luminescence : the journal of biological and chemical luminescence 2019, 35, 347–354. doi:10.1002/bio.3733
  • Eidelman, E. D.; Arkhipov, A. V. Field emission from carbon nanostructures: models and experiment. Uspekhi Fizicheskih Nauk 2019, 190, 693–714. doi:10.3367/ufnr.2019.06.038576
  • Kleshch, V. I.; Eremina, V. A.; Serbun, P.; Orekhov, A. S.; Lützenkirchen-Hecht, D.; Obraztsova, E. D.; Obraztsov, A. N. A Comparative Study of Field Emission From Semiconducting and Metallic Single‐Walled Carbon Nanotube Planar Emitters. physica status solidi (b) 2017, 255, 1700268. doi:10.1002/pssb.201700268
  • Egorov, N.; Sheshin, E. Field Emission Cathode-Based Devices and Equipment. Field Emission Electronics; Springer International Publishing, 2017; pp 427–538. doi:10.1007/978-3-319-56561-3_8
  • Kumar, A.; Khan, S.; Zulfequar, M.; Harsh; Husain, M. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD. Applied Surface Science 2017, 402, 161–167. doi:10.1016/j.apsusc.2017.01.044
  • Kuzhir, P.; Gurinovich, A.; Volynets, N.; Gurnevich, E.; Demidenko, M.; Maksimenko, S. A.; Baturkin, S.; Kaplas, T.; Svirko, Y. Ultra-thin graphitic carbon film for high-power electronics applications. Micro & Nano Letters 2017, 12, 140–142. doi:10.1049/mnl.2016.0599
  • Arkhipov, A. V.; Gabdullin, P. G.; Gordeev, S. K.; Zhurkin, A. M.; Kvashenkina, O. E. Photostimulation of conductivity and electronic properties of field-emission nanocarbon coatings on silicon. Technical Physics 2017, 62, 127–136. doi:10.1134/s1063784216120045
  • Magdesieva, T. V.; Shvets, P. V.; Nikitin, O. M.; Obraztsova, E. A.; Tuyakova, F. T.; Sergeyev, V. G.; Khokhlov, A. R.; Obraztsov, A. N. Electrochemical characterization of mesoporous nanographite films. Carbon 2016, 105, 96–102. doi:10.1016/j.carbon.2016.04.028
  • Shimoi, N.; Abe, D.; Tanaka, Y.; Tohji, K. A stand-alone flat-plane lighting device in a diode structure employing highly crystalline SWCNTs as field emitters. Diamond and Related Materials 2016, 65, 152–157. doi:10.1016/j.diamond.2016.03.015
  • Li, S.; Ma, L.; Long, H.; Yu, X.; Luo, H.; Wang, Y.; Zhu, H.; Yu, Z.; Ma, M.; Wei, Q. Enhanced electron field emission properties of diamond/microcrystalline graphite composite films synthesized by thermal catalytic etching. Applied Surface Science 2016, 367, 473–479. doi:10.1016/j.apsusc.2016.01.195
  • Kleshch, V. I.; Bandurin, D. A.; Orekhov, A. S.; Purcell, S. T.; Obraztsov, A. N. Edge field emission of large-area single layer graphene. Applied Surface Science 2015, 357, 1967–1974. doi:10.1016/j.apsusc.2015.09.160
  • Kleshch, V. I.; Ismagilov, R. R.; Smolnikova, E. A.; Obraztsova, E. A.; Tuyakova, F. T.; Obraztsov, A. N. Atomic layer deposition of TiO2 and Al2O3 on nanographite films: structure and field emission properties. Journal of Nanophotonics 2015, 10, 012509. doi:10.1117/1.jnp.10.012509
  • Ziatdinov, A. M. Nanographites, their compounds, and film structures. Russian Chemical Bulletin 2015, 64, 1–14. doi:10.1007/s11172-015-0812-y
  • Bugaev, A. S.; Kireev, V. B.; Sheshin, E. P.; Kolodyazhnyj, A. J. Cathodoluminescent light sources: status and prospects. Physics-Uspekhi 2015, 58, 792–818. doi:10.3367/ufne.0185.201508e.0853
  • Bandurin, D. A.; Mingels, S.; Kleshch, V. I.; Lützenkirchen-Hecht, D.; Müller, G.; Obraztsov, A. N. Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite. Applied Physics Letters 2015, 106, 233112. doi:10.1063/1.4922550
  • Bugaev, A. S.; Kireev, V. B.; Sheshin, E. P.; Kolodyazhnyj, A. J. Cathodoluminescent light sources: status and prospects. Uspekhi Fizicheskih Nauk 2015, 185, 853–883. doi:10.3367/ufnr.0185.201508e.0853
Other Beilstein-Institut Open Science Activities