Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage

Ben Breitung, M. Anji Reddy, Venkata Sai Kiran Chakravadhanula, Michael Engel, Christian Kübel, Annie K. Powell, Horst Hahn and Maximilian Fichtner
Beilstein J. Nanotechnol. 2013, 4, 705–713. https://doi.org/10.3762/bjnano.4.80

Supporting Information

Supporting Information File 1: Detailed experimental data.
Format: PDF Size: 261.0 KB Download

Cite the Following Article

Influence of particle size and fluorination ratio of CFx precursor compounds on the electrochemical performance of C–FeF2 nanocomposites for reversible lithium storage
Ben Breitung, M. Anji Reddy, Venkata Sai Kiran Chakravadhanula, Michael Engel, Christian Kübel, Annie K. Powell, Horst Hahn and Maximilian Fichtner
Beilstein J. Nanotechnol. 2013, 4, 705–713. https://doi.org/10.3762/bjnano.4.80

How to Cite

Breitung, B.; Reddy, M. A.; Chakravadhanula, V. S. K.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M. Beilstein J. Nanotechnol. 2013, 4, 705–713. doi:10.3762/bjnano.4.80

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gao, M.; Cai, D.; Luo, S.; Yang, Y.; Xie, Y.; Zhu, L.; Yuan, Z. Research progress in fluorinated carbon sources and the discharge mechanism for Li/CFxprimary batteries. Journal of Materials Chemistry A 2023, 11, 16519–16538. doi:10.1039/d3ta02425c
  • Chakraborty, D.; Pramanik, S. Lightweight Metallic Nanocomposites in Energy Applications. Energy, Environment, and Sustainability; Springer Nature Singapore, 2022; pp 7–47. doi:10.1007/978-981-16-8599-6_2
  • Cao, Y.; Nogawa, K.; Kobayashi, N.; Masumoto, H. Fabrication of transition metal (TM = Fe, Co) difluorides-carbon nanocomposite films by magnetron co-sputtered deposition of Fe/Co and Teflon targets. Applied Physics Express 2021, 14, 075502. doi:10.35848/1882-0786/ac07f0
  • Sharma, N.; Dubois, M.; Guérin, K.; Pischedda, V.; Radescu, S. Fluorinated (Nano)Carbons: CF x Electrodes and CF x ‐Based Batteries. Energy Technology 2021, 9, 2000605. doi:10.1002/ente.202000605
  • Helen, M.; Fichtner, M.; Reddy, M. A. Electrochemical synthesis of carbon-metal fluoride nanocomposites as cathode materials for lithium batteries. Electrochemistry Communications 2020, 120, 106846. doi:10.1016/j.elecom.2020.106846
  • Singh, R.; Witte, R.; Mu, X.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B. Reversible control of magnetism: on the conversion of hydrated FeF3 with Li to Fe and LiF. Journal of Materials Chemistry A 2019, 7, 24005–24011. doi:10.1039/c9ta08928d
  • Ju, J.; Lv, Y.; Wang, L.; Liu, W.; Li, Z.; Kang, W.; Cheng, B. The Construction of Fe-Compounds Doped Porous Carbon Nanofiber and Carbon Nanotube Composite Material by One-Step Carbonization and CVD for Li-Ion Capacitor. Journal of The Electrochemical Society 2019, 166, A1223–A1230. doi:10.1149/2.1041906jes
  • Bhatt, M. D.; Lee, J. Y. High capacity conversion anodes in Li-ion batteries: A review. International Journal of Hydrogen Energy 2019, 44, 10852–10905. doi:10.1016/j.ijhydene.2019.02.015
  • Reddy, M. A.; Breitung, B.; Chakravadhanula, V. S. K.; Helen, M.; Witte, R.; Rongeat, C.; Kübel, C.; Hahn, H.; Fichtner, M. Facile synthesis of C–FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage. RSC advances 2018, 8, 36802–36811. doi:10.1039/c8ra07378c
  • Siebels, M.; Mai, L.; Schmolke, L.; Schütte, K.; Barthel, J.; Yue, J.; Thomas, J.; Smarsly, B. M.; Devi, A.; Fischer, R. A.; Janiak, C. Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. Beilstein journal of nanotechnology 2018, 9, 1881–1894. doi:10.3762/bjnano.9.180
  • Schmitz, A.; Schütte, K.; Ilievski, V.; Barthel, J.; Burk, L.; Mülhaupt, R.; Yue, J.; Smarsly, B. M.; Janiak, C. Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide. Beilstein journal of nanotechnology 2017, 8, 2474–2483. doi:10.3762/bjnano.8.247
  • Cao, Y.; Huang, J.; Peng, X.; Cao, D.; Galaska, A. M.; Qiu, S.; Liu, J.; Khan, M. A.; Young, D. P.; Ryu, J. E.; Feng, H.; Yerra, N.; Guo, Z. Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon 2017, 115, 503–514. doi:10.1016/j.carbon.2017.01.033
  • Reddy, M. A.; Breitung, B.; Wall, C.; Trivedi, S.; Chakravadhanula, V. S. K.; Helen, M.; Fichtner, M. Facile Synthesis of Carbon–Metal Fluoride Nanocomposites for Lithium‐Ion Batteries. Energy Technology 2015, 4, 201–211. doi:10.1002/ente.201500358
  • Teng, Y. T.; Wei, F.; Yazami, R. Synthesis of NixCo(1−x)F2 (x = 0, 0.25, 0.50, 0.75, 1.0) and application in lithium ion batteries. Journal of Alloys and Compounds 2015, 653, 434–443. doi:10.1016/j.jallcom.2015.09.036
  • Aymard, L.; Oumellal, Y.; Bonnet, J.-P. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries. Beilstein journal of nanotechnology 2015, 6, 1821–1839. doi:10.3762/bjnano.6.186
  • Ming, H.; Ming, J.; Kwak, W.-J.; Yang, W.; Zhou, Q.; Zheng, J.; Sun, Y.-K. Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochimica Acta 2015, 169, 291–299. doi:10.1016/j.electacta.2015.04.108
  • Reddy, M. A.; Fichtner, M. Fluoride Cathodes for Secondary Batteries. Advanced Fluoride-Based Materials for Energy Conversion; Elsevier, 2015; pp 51–76. doi:10.1016/b978-0-12-800679-5.00003-8
  • Gu, W.; Magasinski, A.; Zdyrko, B.; Yushin, G. Metal Fluorides Nanoconfined in Carbon Nanopores as Reversible High Capacity Cathodes for Li and Li‐Ion Rechargeable Batteries: FeF2 as an Example. Advanced Energy Materials 2014, 5, 1401148–n/a. doi:10.1002/aenm.201401148
Other Beilstein-Institut Open Science Activities