Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

Florian Vollnhals, Martin Drost, Fan Tu, Esther Carrasco, Andreas Späth, Rainer H. Fink, Hans-Peter Steinrück and Hubertus Marbach
Beilstein J. Nanotechnol. 2014, 5, 1175–1185. https://doi.org/10.3762/bjnano.5.129

Supporting Information

Supporting Information contains additional SEM images of proximity effects during EBID of Co(CO)3NO and examples of Fe deposits prepared by EBID/EBISA and autocatalytic growth using Fe(CO)5 as a precursor on native oxide on a silicon nitride membrane.

Supporting Information File 1: Additional SEM images.
Format: PDF Size: 464.9 KB Download

Cite the Following Article

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO
Florian Vollnhals, Martin Drost, Fan Tu, Esther Carrasco, Andreas Späth, Rainer H. Fink, Hans-Peter Steinrück and Hubertus Marbach
Beilstein J. Nanotechnol. 2014, 5, 1175–1185. https://doi.org/10.3762/bjnano.5.129

How to Cite

Vollnhals, F.; Drost, M.; Tu, F.; Carrasco, E.; Späth, A.; Fink, R. H.; Steinrück, H.-P.; Marbach, H. Beilstein J. Nanotechnol. 2014, 5, 1175–1185. doi:10.3762/bjnano.5.129

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mészáros, D.; Matejčík, Š.; Papp, P. Formation of negative ions from cobalt tricarbonyl nitrosyl Co(CO)3NO clusters. Physical chemistry chemical physics : PCCP 2024, 26, 7522–7533. doi:10.1039/d3cp05601e
  • Sobell, Z. C.; George, S. M. Electron-Enhanced Atomic Layer Deposition of Titanium Nitride Films Using an Ammonia Reactive Background Gas. Chemistry of Materials 2022, 34, 9624–9633. doi:10.1021/acs.chemmater.2c02341
  • Kamali, A.; Bilgilisoy, E.; Wolfram, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Marbach, H.; Ingólfsson, O. On the Electron-Induced Reactions of (CH3)AuP(CH3)3: A Combined UHV Surface Science and Gas-Phase Study. Nanomaterials (Basel, Switzerland) 2022, 12, 2727. doi:10.3390/nano12152727
  • Yibibulla, T.; Mead, J. L.; Ma, L.; Hou, L.; Huang, H.; Wang, S. The Shearing Behavior of Nanowire Contact Pairs in Air and the Role of Humidity. physica status solidi (RRL) – Rapid Research Letters 2022, 16. doi:10.1002/pssr.202200130
  • Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
  • Bilgilisoy, E.; Yu, J.-C.; Preischl, C.; McElwee-White, L.; Steinrück, H.-P.; Marbach, H. Nanoscale Ruthenium-Containing Deposits from Ru(CO)4I2 via Simultaneous Focused Electron Beam-Induced Deposition and Etching in Ultrahigh Vacuum: Mask Repair in Extreme Ultraviolet Lithography and Beyond. ACS Applied Nano Materials 2022, 5, 3855–3865. doi:10.1021/acsanm.1c04481
  • Lee, Y.; Kolesov, G.; Yao, X.; Kaxiras, E.; Cho, K. Nonadiabatic dynamics of cobalt tricarbonyl nitrosyl for ligand dissociation induced by electronic excitation. Scientific reports 2021, 11, 8997. doi:10.1038/s41598-021-88243-2
  • Preischl, C.; Le, L. H.; Bilgilisoy, E.; Gölzhäuser, A.; Marbach, H. Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing. Beilstein journal of nanotechnology 2021, 12, 319–329. doi:10.3762/bjnano.12.26
  • Berger, L.; Jurczyk, J.; Madajska, K.; Edwards, T. E. J.; Szymańska, I.; Hoffmann, P.; Utke, I. High-Purity Copper Structures from a PerfluorinatedCopper Carboxylate Using Focused Electron Beam Induced Depositionand Post-Purification. ACS Applied Electronic Materials 2020, 2, 1989–1996. doi:10.1021/acsaelm.0c00282
  • Späth, A. Additive Nano-Lithography with Focused Soft X-rays: Basics, Challenges, and Opportunities. Micromachines 2019, 10, 834. doi:10.3390/mi10120834
  • Sobell, Z. C.; Cavanagh, A. S.; George, S. M. Growth of cobalt films at room temperature using sequential exposures of cobalt tricarbonyl nitrosyl and low energy electrons. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2019, 37, 060906. doi:10.1116/1.5113711
  • Ahlenhoff, K.; Preischl, C.; Swiderek, P.; Marbach, H. Electron Beam-Induced Surface Activation of Metal–Organic Framework HKUST-1: Unraveling the Underlying Chemistry. The Journal of Physical Chemistry C 2018, 122, 26658–26670. doi:10.1021/acs.jpcc.8b06226
  • Drost, M.; Tu, F.; Berger, L.; Preischl, C.; Zhou, W.; Gliemann, H.; Wöll, C.; Marbach, H. Surface-Anchored Metal–Organic Frameworks as Versatile Resists for Gas-Assisted E-Beam Lithography: Fabrication of Sub-10 Nanometer Structures. ACS nano 2018, 12, 3825–3835. doi:10.1021/acsnano.8b01071
  • Tu, F.; Drost, M.; Szenti, I.; Kiss, J.; Kónya, Z.; Marbach, H. Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits. Beilstein journal of nanotechnology 2017, 8, 2592–2605. doi:10.3762/bjnano.8.260
  • Drost, M.; Tu, F.; Vollnhals, F.; Szenti, I.; Kiss, J.; Marbach, H. On the Principles of Tweaking Nanostructure Fabrication via Focused Electron Beam Induced Processing Combined with Catalytic Growth Processes. Small Methods 2017, 1, 1700095. doi:10.1002/smtd.201700095
  • Tu, F.; Späth, A.; Drost, M.; Vollnhals, F.; Calderon, S. K.; Fink, R. H.; Marbach, H. Exploring the fabrication of Co and Mn nanostructures with focused soft x-ray beam induced deposition. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2017, 35, 031601. doi:10.1116/1.4979274
  • Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes. Nanotechnology 2016, 27, 355302. doi:10.1088/0957-4484/27/35/355302
  • Bayatsarmadi, B.; Zheng, Y.; Tang, Y.; Jaroniec, M.; Qiao, S.-Z. Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping. Small (Weinheim an der Bergstrasse, Germany) 2016, 12, 3703–3711. doi:10.1002/smll.201601131
  • De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). Journal of Physics D: Applied Physics 2016, 49, 243003. doi:10.1088/0022-3727/49/24/243003
  • Schwaiger, R.; Schneider, J.; Bourret, G. R.; Diwald, O. Hydration of magnesia cubes: a helium ion microscopy study. Beilstein journal of nanotechnology 2016, 7, 302–309. doi:10.3762/bjnano.7.28
Other Beilstein-Institut Open Science Activities