Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

Santiago D. Solares, Sangmin An and Christian J. Long
Beilstein J. Nanotechnol. 2014, 5, 1637–1648. https://doi.org/10.3762/bjnano.5.175

Cite the Following Article

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air
Santiago D. Solares, Sangmin An and Christian J. Long
Beilstein J. Nanotechnol. 2014, 5, 1637–1648. https://doi.org/10.3762/bjnano.5.175

How to Cite

Solares, S. D.; An, S.; Long, C. J. Beilstein J. Nanotechnol. 2014, 5, 1637–1648. doi:10.3762/bjnano.5.175

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Krawczyk-Wołoszyn, K.; Roczkowski, D.; Reich, A. Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy. Medicina (Kaunas, Lithuania) 2024, 60, 297. doi:10.3390/medicina60020297
  • Yilmaz, C.; Sahin, R.; Topal, E. S. Theoretical study on the sensitivity of dynamic acoustic force measurement through monomodal and bimodal excitations of rectangular micro-cantilever. Engineering Research Express 2021, 3, 045035. doi:10.1088/2631-8695/ac3a55
  • Yilmaz, C.; Topal, E. S. Çok Modlu Tahrik Şemalarının Kullanıldığı Dinamik Akustik Kuvvet Ölçümünde Eğilme Özmodlarındaki Genlik Tepkileri. European Journal of Science and Technology 2021, 120–125. doi:10.31590/ejosat.991652
  • Yilmaz, C.; Sahin, R.; Topal, E. S. Exploring the static acoustic force sensitivity using AFM micro-cantilever under single- and bimodal-frequency excitation. Measurement Science and Technology 2021, 32, 115001. doi:10.1088/1361-6501/ac0eb1
  • Stan, G.; King, S. W. Atomic force microscopy for nanoscale mechanical property characterization. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2020, 38, 060801. doi:10.1116/6.0000544
  • López-Guerra, E. A.; Solares, S. D. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges. Beilstein journal of nanotechnology 2020, 11, 1409–1418. doi:10.3762/bjnano.11.125
  • Uluutku, B.; Solares, S. D. Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis. Beilstein journal of nanotechnology 2020, 11, 453–465. doi:10.3762/bjnano.11.37
  • Ruppert, M. G.; Harcombe, D. M.; Moore, S. I.; Fleming, A. J. ACC - Direct Design of Closed-loop Demodulators for Amplitude Modulation Atomic Force Microscopy. In 2018 Annual American Control Conference (ACC), IEEE, 2018; pp 4336–4341. doi:10.23919/acc.2018.8430896
  • Potekin, R.; Dharmasena, S.; Keum, H.; Jiang, X.; Lee, J.; Kim, S.; Bergman, L. A.; Vakakis, A. F.; Cho, H. Multi-frequency Atomic Force Microscopy based on enhanced internal resonance of an inner-paddled cantilever. Sensors and Actuators A: Physical 2018, 273, 206–220. doi:10.1016/j.sna.2018.01.063
  • Eppell, S. J.; Feinstein, M.; Li, L.; White, B.; Zypman, F. R. Signal distortion in atomic force microscopy photodetector. The Review of scientific instruments 2017, 88, 103703. doi:10.1063/1.5008833
  • Ruppert, M. G.; Harcombe, D. M.; Ragazzon, M. R. P.; Moheimani, S. O. R.; Fleming, A. J. A review of demodulation techniques for amplitude-modulation atomic force microscopy. Beilstein journal of nanotechnology 2017, 8, 1407–1426. doi:10.3762/bjnano.8.142
  • Ebeling, D.; Zhong, Q.; Ahles, S.; Chi, L.; Wegner, H. A.; Schirmeisen, A. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy. Applied Physics Letters 2017, 110, 183102. doi:10.1063/1.4982801
  • Santos, S.; Lai, C.-Y.; Olukan, T.; Chiesa, M. Multifrequency AFM: from origins to convergence. Nanoscale 2017, 9, 5038–5043. doi:10.1039/c7nr00993c
  • Xiao, J.; Herng, T. S.; Ding, J.; Zeng, K. Polarization rotation in copper doped zinc oxide (ZnO:Cu) thin films studied by Piezoresponse Force Microscopy (PFM) techniques. Acta Materialia 2017, 123, 394–403. doi:10.1016/j.actamat.2016.10.051
  • Gonzalez, D.; Alfredo, J.
  • Labuda, A.; Kocun, M.; Lysy, M.; Walsh, T.; Meinhold, J.; Proksch, T.; Meinhold, W.; Anderson, C.; Proksch, R. Calibration of higher eigenmodes of cantilevers. The Review of scientific instruments 2016, 87, 073705. doi:10.1063/1.4955122
  • Jones, O. G. Developments in dynamic atomic force microscopy techniques to characterize viscoelastic behaviors of food materials at the nanometer-scale. Current Opinion in Food Science 2016, 9, 77–83. doi:10.1016/j.cofs.2016.09.008
  • Maver, U.; Velnar, T.; Gaberšček, M.; Planinšek, O.; Finšgar, M. Recent progressive use of atomic force microscopy in biomedical applications. TrAC Trends in Analytical Chemistry 2016, 80, 96–111. doi:10.1016/j.trac.2016.03.014
  • Solares, S. D. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions. Beilstein journal of nanotechnology 2016, 7, 554–571. doi:10.3762/bjnano.7.49
  • Damircheli, M.; Payam, A. F.; Garcia, R. Optimization of phase contrast in bimodal amplitude modulation AFM. Beilstein journal of nanotechnology 2015, 6, 1072–1081. doi:10.3762/bjnano.6.108
Other Beilstein-Institut Open Science Activities