Design criteria for stable Pt/C fuel cell catalysts

Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67. https://doi.org/10.3762/bjnano.5.5

Supporting Information

Supporting Information features a schematic illustration of the most important steps in the synthesis process of HGS, Pt@HGS 1–2 nm and Pt@HGS 3–4 nm. TEM images of reference materials, activity data in sulphuric acid, thin-film degradation tests on a commercial Pt/C 1–2 nm catalyst as well as further IL-TEM data are also available together with the derivation of the equation for the average inter-particle distance.

Supporting Information File 1: Further experimental data.
Format: PDF Size: 929.4 KB Download

Cite the Following Article

Design criteria for stable Pt/C fuel cell catalysts
Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67. https://doi.org/10.3762/bjnano.5.5

How to Cite

Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein J. Nanotechnol. 2014, 5, 44–67. doi:10.3762/bjnano.5.5

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Danisman, B.; Zhang, G.; Baumunk, A. F.; Yang, J.; Brummel, O.; Darge, P.; Dworschak, D.; Mayrhofer, K. J. J.; Libuda, J.; Zhou, X.; Wu, M.; Spiecker, E.; Ledendecker, M.; Etzold, B. J. M. Increasing Activity of Trimetallic Oxygen Reduction PtNiMo/C Catalysts Through Initial Conditioning. ChemElectroChem 2024. doi:10.1002/celc.202400070
  • Smykala, S.; Liszka, B.; Tomiczek, A. E.; Pawlyta, M. Using the IL-TEM Technique to Understand the Mechanism and Improve the Durability of Platinum Cathode Catalysts for Proton-Exchange Membrane Fuel Cells. Materials 2024, 17, 1384. doi:10.3390/ma17061384
  • Yang, G.; Lee, C.; Qiao, X.; Babu, S. K.; Martinez, U.; Spendelow, J. S. Advanced Electrode Structures for Proton Exchange Membrane Fuel Cells: Current Status and Path Forward. Electrochemical Energy Reviews 2024, 7. doi:10.1007/s41918-023-00208-3
  • Do, V.-H.; Lee, J.-M. Surface engineering for stable electrocatalysis. Chemical Society reviews 2024, 53, 2693–2737. doi:10.1039/d3cs00292f
  • Niu, M.; Gao, Y.; Pan, Q.; Zhang, T. Review on factors of voltage consistency and inconsistent degradation in proton exchange membrane fuel cells. Ionics 2024. doi:10.1007/s11581-024-05449-w
  • Lim, K. R. G.; Kaiser, S. K.; Wu, H.; Garg, S.; Perxés Perich, M.; van der Hoeven, J. E. S.; Aizenberg, M.; Aizenberg, J. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nature Catalysis 2024, 7, 172–184. doi:10.1038/s41929-023-01104-1
  • Ozkan, S.; Kim, S. J.; Miller, D. N.; Irvine, J. T. S. A New Approach to Fuel Cell Electrodes: Lanthanum Aluminate Yielding Fine Pt Nanoparticle Exsolution for Oxygen Reduction Reaction. Advanced Energy Materials 2024. doi:10.1002/aenm.202303025
  • Gao, X.; Dai, S.; Teng, Y.; Wang, Q.; Zhang, Z.; Yang, Z.; Park, M.; Wang, H.; Jia, Z.; Wang, Y.; Yang, Y. Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production. Nano-micro letters 2024, 16, 108. doi:10.1007/s40820-024-01324-5
  • Hrnjić, A.; Kamšek, A. R.; Bijelić, L.; Logar, A.; Maselj, N.; Smiljanić, M.; Trputec, J.; Vovk, N.; Pavko, L.; Ruiz-Zepeda, F.; Bele, M.; Jovanovič, P.; Hodnik, N. Metal-Support Interaction between Titanium Oxynitride and Pt Nanoparticles Enables Efficient Low-Pt-Loaded High-Performance Electrodes at Relevant Oxygen Reduction Reaction Current Densities. ACS catalysis 2024, 14, 2473–2486. doi:10.1021/acscatal.3c03883
  • Roiron, C.; Martin, V.; Kumar, K.; Dubau, L.; Maillard, F. Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts. Electrochimica Acta 2024, 477, 143760. doi:10.1016/j.electacta.2024.143760
  • Jenewein, K. J.; Torresi, L.; Haghmoradi, N.; Kormányos, A.; Friederich, P.; Cherevko, S. Navigating the unknown with AI: multiobjective Bayesian optimization of non-noble acidic OER catalysts. Journal of Materials Chemistry A 2024, 12, 3072–3083. doi:10.1039/d3ta06651g
  • Magnussen, O. M.; Drnec, J.; Qiu, C.; Martens, I.; Huang, J. J.; Chattot, R.; Singer, A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chemical reviews 2024, 124, 629–721. doi:10.1021/acs.chemrev.3c00331
  • Godoy, A. O.; Foster, J.; Dicome, M.; McCool, G.; Zulevi, B.; Ostraat, M.; Pylypenko, S.; Jankovic, J. Understanding the Effects of Heat Treatment Temperature and Atmosphere on Platinum Nanoparticle Sintering Processes on Different Engineered Catalyst Supports (ECS) for Fuel Cell Applications. ACS Applied Energy Materials 2024, 7, 951–964. doi:10.1021/acsaem.3c02196
  • Briega‐Martos, V.; Fuchs, T.; Drnec, J.; Magnussen, O. M.; Cherevko, S. Effects of Anions and Surface Structure on Pt Single Crystal Dissolution in Acidic Electrolytes. ChemElectroChem 2024, 11. doi:10.1002/celc.202300554
  • Zheng, H.; Chen, Z.; Zhang, J.; Deng, S.; Shahbazi, S.; Zhang, J.; Jiang, Z.; Liu, L.; Yang, C.-M.; Lai, N.-C. One-step synthesis of thin-carbon-shell-encapsulated binary cobalt chromium nitrides for oxygen reduction reaction. Applied Surface Science 2024, 644, 158722. doi:10.1016/j.apsusc.2023.158722
  • Smiljanić, M.; Hrnjić, A.; Maselj, N.; Gatalo, M.; Jovanovič, P.; Hodnik, N. Advanced electrochemical methods for characterization of proton exchange membrane electrocatalysts. Polymer Electrolyte-Based Electrochemical Devices; Elsevier, 2024; pp 49–90. doi:10.1016/b978-0-323-89784-6.00002-4
  • Pavlets, A.; Titskaya, E.; Alekseenko, A.; Pankov, I.; Ivanchenko, A.; Falina, I. Operation features of PEMFCs with De-alloyed PtCu/C catalysts. International Journal of Hydrogen Energy 2024, 50, 458–470. doi:10.1016/j.ijhydene.2023.07.028
  • Paperzh, K.; Alekseenko, A.; Pankov, I.; Guterman, V. Accelerated stress tests for Pt/C electrocatalysts: An approach to understanding the degradation mechanisms. Journal of Electroanalytical Chemistry 2024, 952, 117972. doi:10.1016/j.jelechem.2023.117972
  • Zucconi, A.; Hack, J.; Stocker, R.; Suter, T. A. M.; Rettie, A. J. E.; Brett, D. J. L. Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review. Journal of Materials Chemistry A 2024. doi:10.1039/d3ta06895a
  • Brandiele, R.; Guadagnini, A.; Parnigotto, M.; Pini, F.; Coviello, V.; Badocco, D.; Pastore, P.; Rizzi, G. A.; Vittadini, A.; Forrer, D.; Amendola, V.; Durante, C. Laser-optimized Pt-Y alloy nanoparticles embedded in Pt-Y oxide matrix for high stability and ORR electrocatalytic activity. Journal of Energy Chemistry 2024, 92, 508–520. doi:10.1016/j.jechem.2023.12.031

Patents

  • NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. SUPPORTED PLATINUM PARTICLES AND THEIR USE AS CATALYST IN FUEL OR ELECTROLYSIS CELLS. EP 4239732 A2, Sept 6, 2023.
  • NESSELBERGER MARKUS; HASCHE FREDERIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. WO 2019081374 A1, May 2, 2019.
  • NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. EP 3473337 A1, April 24, 2019.
Other Beilstein-Institut Open Science Activities