Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

Aleksandra Szkudlarek, Alfredo Rodrigues Vaz, Yucheng Zhang, Andrzej Rudkowski, Czesław Kapusta, Rolf Erni, Stanislav Moshkalev and Ivo Utke
Beilstein J. Nanotechnol. 2015, 6, 1508–1517. https://doi.org/10.3762/bjnano.6.156

Supporting Information

Supporting Information features additional information about the chemical mapping with electron energy loss spectroscopy, the estimation of Cu precipitation on deposit, and the distribution of Cu nanocrystals along the Cu–C lines after conventional and IR laser thermal annealing.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 531.3 KB Download

Cite the Following Article

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods
Aleksandra Szkudlarek, Alfredo Rodrigues Vaz, Yucheng Zhang, Andrzej Rudkowski, Czesław Kapusta, Rolf Erni, Stanislav Moshkalev and Ivo Utke
Beilstein J. Nanotechnol. 2015, 6, 1508–1517. https://doi.org/10.3762/bjnano.6.156

How to Cite

Szkudlarek, A.; Rodrigues Vaz, A.; Zhang, Y.; Rudkowski, A.; Kapusta, C.; Erni, R.; Moshkalev, S.; Utke, I. Beilstein J. Nanotechnol. 2015, 6, 1508–1517. doi:10.3762/bjnano.6.156

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jurczyk, J.; Höflich, K.; Madajska, K.; Berger, L.; Brockhuis, L.; Edwards, T. E. J.; Kapusta, C.; Szymańska, I. B.; Utke, I. Ligand Size and Carbon-Chain Length Study of Silver Carboxylates in Focused Electron-Beam-Induced Deposition. Nanomaterials (Basel, Switzerland) 2023, 13, 1516. doi:10.3390/nano13091516
  • Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
  • Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
  • Berger, L.; Jurczyk, J.; Madajska, K.; Edwards, T. E. J.; Szymańska, I.; Hoffmann, P.; Utke, I. High-Purity Copper Structures from a PerfluorinatedCopper Carboxylate Using Focused Electron Beam Induced Depositionand Post-Purification. ACS Applied Electronic Materials 2020, 2, 1989–1996. doi:10.1021/acsaelm.0c00282
  • Utke, I.; Michler, J.; Winkler, R.; Plank, H. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. Micromachines 2020, 11, 397. doi:10.3390/mi11040397
  • Rohdenburg, M.; Martinović, P.; Ahlenhoff, K.; Koch, S.; Emmrich, D.; Gölzhäuser, A.; Swiderek, P. Cisplatin as a Potential Platinum Focused Electron Beam Induced Deposition Precursor: NH3 Ligands Enhance the Electron-Induced Removal of Chlorine. The Journal of Physical Chemistry C 2019, 123, 21774–21787. doi:10.1021/acs.jpcc.9b05756
  • Lami, S. K.; Smith, G. L.; Cao, E.; Hastings, J. T. The radiation chemistry of focused electron-beam induced etching of copper in liquids. Nanoscale 2019, 11, 11550–11561. doi:10.1039/c9nr01857c
  • Mutunga, E.; Winkler, R.; Sattelkow, J.; Rack, P. D.; Plank, H.; Fowlkes, J. D. Impact of Electron-Beam Heating during 3D Nanoprinting. ACS nano 2019, 13, 5198–5213. doi:10.1021/acsnano.8b09341
  • Haverkamp, C.; Sarau, G.; Polyakov, M. N.; Utke, I.; dos Santos, M. V. P.; Christiansen, S.; Höflich, K. A novel copper precursor for electron beam induced deposition. Beilstein journal of nanotechnology 2018, 9, 1220–1227. doi:10.3762/bjnano.9.113
  • Drost, M.; Tu, F.; Berger, L.; Preischl, C.; Zhou, W.; Gliemann, H.; Wöll, C.; Marbach, H. Surface-Anchored Metal–Organic Frameworks as Versatile Resists for Gas-Assisted E-Beam Lithography: Fabrication of Sub-10 Nanometer Structures. ACS nano 2018, 12, 3825–3835. doi:10.1021/acsnano.8b01071
  • Lacko, M.; Papp, P.; Szymańska, I.; Szłyk, E.; Matejčík, Š. Electron interaction with copper(II) carboxylate compounds. Beilstein journal of nanotechnology 2018, 9, 384–398. doi:10.3762/bjnano.9.38
  • dos Santos, M. V. P.; Szkudlarek, A.; Rydosz, A.; Guerra-Nuñez, C.; Béron, F.; Pirota, K. R.; Moshkalev, S. A.; Diniz, J. A.; Utke, I. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID. Beilstein journal of nanotechnology 2018, 9, 91–101. doi:10.3762/bjnano.9.11
  • Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall. Nanotechnology 2017, 29, 045704. doi:10.1088/1361-6528/aa9eff
  • Lewis, B. B.; Winkler, R.; Sang, X.; Pudasaini, P. R.; Stanford, M. G.; Plank, H.; Unocic, R. R.; Fowlkes, J. D.; Rack, P. D. 3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity. Beilstein journal of nanotechnology 2017, 8, 801–812. doi:10.3762/bjnano.8.83
  • Esfandiarpour, S.; Boehme, L.; Hastings, J. T. Focused Electron Beam Induced Deposition of Copper with High Resolution and Purity from Aqueous Solutions. Nanotechnology 2017, 28, 125301. doi:10.1088/1361-6528/aa5a4a
  • Huth, M.; Gölzhäuser, A. Focused particle beam-induced processing. Beilstein journal of nanotechnology 2015, 6, 1883–1885. doi:10.3762/bjnano.6.191
  • Syam, A. M. doi:10.13023/etd.2016.510
Other Beilstein-Institut Open Science Activities