Simple and efficient way of speeding up transmission calculations with k-point sampling

Jesper Toft Falkenberg and Mads Brandbyge
Beilstein J. Nanotechnol. 2015, 6, 1603–1608. https://doi.org/10.3762/bjnano.6.164

Supporting Information

Supporting Information File 1: A sample MatLAB code that can read and interpolate data obtained from TranSiesta and TBTrans.
Format: M Size: 13.8 KB Download

Cite the Following Article

Simple and efficient way of speeding up transmission calculations with k-point sampling
Jesper Toft Falkenberg and Mads Brandbyge
Beilstein J. Nanotechnol. 2015, 6, 1603–1608. https://doi.org/10.3762/bjnano.6.164

How to Cite

Falkenberg, J. T.; Brandbyge, M. Beilstein J. Nanotechnol. 2015, 6, 1603–1608. doi:10.3762/bjnano.6.164

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Romero, A.; Velasco-Medina, J.; Ortiz, A. Morphology Determines an Efficient Coherent Electron Transport for Push-Pull Organic Semiconductors Based on Triphenylamine and Dicyanovinyl Groups. Materials (Basel, Switzerland) 2023, 16, 2442. doi:10.3390/ma16062442
  • Lin, C.; Liu, Y.; Wang, G.; Li, K.; Xu, H.; Zhang, W.; Shao, C.; Yang, Z. Novel Dyes Design Based on First Principles and the Prediction of Energy Conversion Efficiencies of Dye-Sensitized Solar Cells. ACS omega 2020, 6, 715–722. doi:10.1021/acsomega.0c05240
  • Glukhova, O. E.; Shmygin, D. S. The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations. Beilstein journal of nanotechnology 2018, 9, 1254–1262. doi:10.3762/bjnano.9.117
  • Li, Q.; Strange, M.; Duchemin, I.; Donadio, D.; Solomon, G. C. A Strategy to Suppress Phonon Transport in Molecular Junctions Using π-Stacked Systems. The Journal of Physical Chemistry C 2017, 121, 7175–7182. doi:10.1021/acs.jpcc.7b02005
  • Papior, N. R.; Lorente, N.; Frederiksen, T.; García, A.; Brandbyge, M. Improvements on non-equilibrium and transport Green function techniques: The next-generation TRANSIESTA. Computer Physics Communications 2017, 212, 8–24. doi:10.1016/j.cpc.2016.09.022
  • Li, B.-L.; Chen, K.-Q. Huge inelastic current at low temperature in graphene nanoribbons. Journal of physics. Condensed matter : an Institute of Physics journal 2016, 29, 075301. doi:10.1088/1361-648x/aa530a
  • Jacobsen, K. W.; Falkenberg, J. T.; Papior, N. R.; Bøggild, P.; Jauho, A.-P.; Brandbyge, M. All-graphene edge contacts: Electrical resistance of graphene T-junctions. Carbon 2016, 101, 101–106. doi:10.1016/j.carbon.2016.01.084
  • Rübner, N. Manipulating the voltage drop in graphene nanojunctions using a gate potential. Physical chemistry chemical physics : PCCP 2016, 18, 1025–1031. doi:10.1039/c5cp04613k
  • Hüser, F.; Solomon, G. C. Electron Transport in Molecular Junctions with Graphene as Protecting Layer. The Journal of chemical physics 2015, 143, 214302. doi:10.1063/1.4936409
Other Beilstein-Institut Open Science Activities