The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots

Vladimir V. Breus, Anna Pietuch, Marco Tarantola, Thomas Basché and Andreas Janshoff
Beilstein J. Nanotechnol. 2015, 6, 281–292. https://doi.org/10.3762/bjnano.6.26

Supporting Information

Supporting Information File 1: Additional figures comprising fluorescence micrographs and tracks.
Format: PDF Size: 852.0 KB Download

Cite the Following Article

The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots
Vladimir V. Breus, Anna Pietuch, Marco Tarantola, Thomas Basché and Andreas Janshoff
Beilstein J. Nanotechnol. 2015, 6, 281–292. https://doi.org/10.3762/bjnano.6.26

How to Cite

Breus, V. V.; Pietuch, A.; Tarantola, M.; Basché, T.; Janshoff, A. Beilstein J. Nanotechnol. 2015, 6, 281–292. doi:10.3762/bjnano.6.26

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Thiruvengadam, M.; Chi, H. Y.; Kim, S.-H. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. Plant physiology and biochemistry : PPB 2024, 207, 108370. doi:10.1016/j.plaphy.2024.108370
  • Qian, Z.; Zhang, Y.; Yuan, J.; Gong, S.; Chen, B. Current applications of nanomaterials in urinary system tumors. Frontiers in bioengineering and biotechnology 2023, 11, 1111977. doi:10.3389/fbioe.2023.1111977
  • Le, N.; Zhang, M.; Kim, K. Quantum Dots and Their Interaction with Biological Systems. International journal of molecular sciences 2022, 23, 10763. doi:10.3390/ijms231810763
  • Asadian, Z.; Zare, H.; Aghaei, M.; Panjehpour, M. Caveolae-dependent endocytosis mediates the cellular uptake of CdTe quantum dots in ovarian cancer cell lines. Research in pharmaceutical sciences 2022, 17, 527. doi:10.4103/1735-5362.355211
  • Martynenko, I. V.; Purcell-Milton, F.; Gun'ko, Y. K. Quantum Dots in Biological Imaging. Supramolecular Chemistry in Biomedical Imaging; The Royal Society of Chemistry, 2022; pp 278–321. doi:10.1039/9781782624028-00278
  • Cheng, W.; Su, Y.-L.; Hsu, H.-H.; Lin, Y.-H.; Chu, L.-A.; Huang, W.-C.; Lu, Y.-J.; Chiang, C.-S.; Hu, S.-H. Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs. ACS nano 2022, 16, 4014–4027. doi:10.1021/acsnano.1c09601
  • Nirosha Yalamandala, B.; Chen, P.-H.; Moorthy, T.; Huynh, T. M. H.; Chiang, W.-H.; Hu, S.-H. Programmed Catalytic Therapy-Mediated ROS Generation and T-Cell Infiltration in Lung Metastasis by a Dual Metal-Organic Framework (MOF) Nanoagent. Pharmaceutics 2022, 14, 527. doi:10.3390/pharmaceutics14030527
  • Horstmann, C.; Davenport, V.; Zhang, M.; Peters, A.; Kim, K. H. Transcriptome Profile Alterations with Carbon Nanotubes, Quantum Dots, and Silver Nanoparticles: A Review. Genes 2021, 12, 794. doi:10.3390/genes12060794
  • Desmau, M.; Levard, C.; Vidal, V.; Ona-Nguema, G.; Charron, G.; Benedetti, M. F.; Gélabert, A. How microbial biofilms impact the interactions of Quantum Dots with mineral surfaces. NanoImpact 2020, 19, 100247. doi:10.1016/j.impact.2020.100247
  • Mradula; Raj, R.; Devi, S.; Mishra, S. Antibody-labeled Gold Nanoparticles Based Immunosensor for the Detection of Thyroxine Hormone. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 2020, 36, 799–806. doi:10.2116/analsci.19p418
  • Shinde, R. B.; Veerapandian, M.; Kaushik, A.; Manickam, P. State-of-Art Bio-Assay Systems and Electrochemical Approaches for Nanotoxicity Assessment. Frontiers in bioengineering and biotechnology 2020, 8, 325. doi:10.3389/fbioe.2020.00325
  • Hunt, N. J. Handbook of surface-functionalized nanomaterials: safety and legal aspects. Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier, 2020; pp 945–982. doi:10.1016/b978-0-12-816787-8.00029-6
  • Horstmann, C.; Kim, D. S.; Campbell, C.; Kim, K. Transcriptome Profile Alteration with Cadmium Selenide/Zinc Sulfide Quantum Dots in Saccharomyces cerevisiae. Biomolecules 2019, 9, 653. doi:10.3390/biom9110653
  • Sioloetwong, T.; Kopwitthaya, A.; Sathirapongsasuti, N.; Nawattanapaiboon, K.; Kitiyakara, C.; Srikhirin, T. Development of Immunochromatographic Test Strip based on Quantum Dot Nanoparticles (QDs). IOP Conference Series: Materials Science and Engineering 2019, 654, 012011. doi:10.1088/1757-899x/654/1/012011
  • Zinkl, M.; Wegener, J. Using animal cells as sensors for xenobiotics: monitoring phenotypic changes by multimodal impedance assays. Current Opinion in Environmental Science & Health 2019, 10, 30–37. doi:10.1016/j.coesh.2019.08.007
  • Xu, M.; Soliman, M.; Sun, X.; Pelaz, B.; Feliu, N.; Parak, W. J.; Liu, S. How Entanglement of Different Physicochemical Properties Complicates the Prediction of in Vitro and in Vivo Interactions of Gold Nanoparticles. ACS nano 2018, 12, 10104–10113. doi:10.1021/acsnano.8b04906
  • Cavallini, F.; Tarantola, M. ECIS based wounding and reorganization of cardiomyocytes and fibroblasts in co-cultures. Progress in biophysics and molecular biology 2018, 144, 116–127. doi:10.1016/j.pbiomolbio.2018.06.010
  • Chelladurai, R.; Debnath, K.; Jana, N. R.; Basu, J. K. Nanoscale Heterogeneities Drive Enhanced Binding and Anomalous Diffusion of Nanoparticles in Model Biomembranes. Langmuir : the ACS journal of surfaces and colloids 2018, 34, 1691–1699. doi:10.1021/acs.langmuir.7b04003
  • Martynenko, I. V.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. Journal of materials chemistry. B 2017, 5, 6701–6727. doi:10.1039/c7tb01425b
  • Ashraf, S.; Park, J.; Bichelberger, M. A.; Kantner, K.; Hartmann, R.; Maffre, P.; Said, A. H.; Feliu, N.; Lee, J.; Lee, D.; Nienhaus, G. U.; Kim, S.; Parak, W. J. Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake. Nanoscale 2016, 8, 17794–17800. doi:10.1039/c6nr05805a
Other Beilstein-Institut Open Science Activities