Carrier multiplication in silicon nanocrystals: ab initio results

Ivan Marri, Marco Govoni and Stefano Ossicini
Beilstein J. Nanotechnol. 2015, 6, 343–352. https://doi.org/10.3762/bjnano.6.33

Cite the Following Article

Carrier multiplication in silicon nanocrystals: ab initio results
Ivan Marri, Marco Govoni and Stefano Ossicini
Beilstein J. Nanotechnol. 2015, 6, 343–352. https://doi.org/10.3762/bjnano.6.33

How to Cite

Marri, I.; Govoni, M.; Ossicini, S. Beilstein J. Nanotechnol. 2015, 6, 343–352. doi:10.3762/bjnano.6.33

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Marri, I.; Grillo, S.; Amato, M.; Ossicini, S.; Pulci, O. Interplay of Quantum Confinement and Strain Effects in Type I to Type II Transition in GeSi Core-Shell Nanocrystals. The journal of physical chemistry. C, Nanomaterials and interfaces 2023, 127, 1209–1219. doi:10.1021/acs.jpcc.2c07024
  • Marri, I.; Ossicini, S. Multiple exciton generation in isolated and interacting silicon nanocrystals. Nanoscale 2021, 13, 12119–12142. doi:10.1039/d1nr01747k
  • Ossicini, S.; Marri, I.; Amato, M.; Palummo, M.; Canadell, E.; Rurali, R. Ab initio studies of the optoelectronic structure of undoped and doped silicon nanocrystals and nanowires: the role of size, passivation, symmetry and phase. Faraday discussions 2020, 222, 217–239. doi:10.1039/c9fd00085b
  • Marri, I.; Amato, M.; Guerra, R.; Ossicini, S. First Principles Modeling of Si/Ge Nanostructures for Photovoltaic and Optoelectronic Applications. physica status solidi (b) 2018, 255, 1700627. doi:10.1002/pssb.201700627
  • Marri, I.; Ossicini, S. First-principle investigations of carrier multiplication in Si nanocrystals: A short review. In AIP Conference Proceedings, Author(s), 2018; pp 020002 ff. doi:10.1063/1.5047756
  • Bertocchi, M.; Amato, M.; Marri, I.; Ossicini, S. Tuning the Work Function of Si(100) Surface by Halogen Absorption: A DFT Study. physica status solidi c 2017, 14, 1700193. doi:10.1002/pssc.201700193
  • Marri, I.; Degoli, E.; Ossicini, S. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces. Progress in Surface Science 2017, 92, 375–408. doi:10.1016/j.progsurf.2017.07.003
  • Marri, I.; Govoni, M.; Ossicini, S. Carrier Multiplication in Silicon Nanocrystals: Theoretical Methodologies and Role of the Passivation. physica status solidi c 2017, 14, 1700198. doi:10.1002/pssc.201700198
  • Mazzaro, R.; Romano, F.; Ceroni, P. Long-lived luminescence of silicon nanocrystals: from principles to applications. Physical chemistry chemical physics : PCCP 2017, 19, 26507–26526. doi:10.1039/c7cp05208a
  • Gert, A. V.; Nestoklon, M.; Prokofiev, A. A.; Yassievich, I. Tight-binding simulation of silicon and germanium nanocrystals. Semiconductors 2017, 51, 1274–1289. doi:10.1134/s1063782617100098
  • Marri, I.; Degoli, E.; Ossicini, S. First Principle Studies of B and P Doped Si Nanocrystals. physica status solidi (a) 2017, 215, 1700414. doi:10.1002/pssa.201700414
  • Kryjevski, A.; Gifford, B. J.; Kilina, S.; Kilin, D. S. Theoretical predictions on efficiency of bi-exciton formation and dissociation in chiral carbon nanotubes. The Journal of chemical physics 2016, 145, 154112. doi:10.1063/1.4963735
  • Ossicinia, S.; Govonia, b. M.; Guerraa, R.; Marria, I. Silicon Nanophotonics: Basic Principles, Present Status, and Perspectives, 2nd Ed - Chapter 2 Silicon Nanocrystals for Photonics and Photovoltaics: Ab initio Results. Silicon Nanophotonics: Basic Principles, Present Status, and Perspectives, 2nd Ed; Pan Stanford Publishing Pte. Ltd., 2016; pp 27–60. doi:10.1201/9781315364797-3
  • Marri, I.; Govoni, M.; Ossicini, S. First-principles calculations of electronic coupling effects in silicon nanocrystals: Influence on near band-edge states and on carrier multiplication processes. Solar Energy Materials and Solar Cells 2016, 145, 162–169. doi:10.1016/j.solmat.2015.07.013
  • Kryjevski, A.; Kilin, D. Enhanced multiple exciton generation in amorphous silicon nanowires and films. Molecular Physics 2015, 1–15. doi:10.1080/00268976.2015.1076580
  • Kryjevski, A.; Kilin, D. S. Enhanced multiple exciton generation in amorphous silicon nanowires and films. Molecular Physics 2015, 114, 365–379.
  • Excited-State Relaxation in Group IV Nanocrystals Investigated Using Optical Methods. Nanotechnology and Photovoltaic Devices; Jenny Stanford Publishing, 2015; pp 159–190. doi:10.1201/b18090-7
Other Beilstein-Institut Open Science Activities