Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

Christian Suchomski, Ben Breitung, Ralf Witte, Michael Knapp, Sondes Bauer, Tilo Baumbach, Christian Reitz and Torsten Brezesinski
Beilstein J. Nanotechnol. 2016, 7, 1350–1360. https://doi.org/10.3762/bjnano.7.126

Supporting Information

Supporting Information File 1: GC-MS, TGA-MS, Mössbauer spectra, alternating-current magnetometry and Tauc plots of as-prepared ZFO nanoparticles; SEM images of ZFO nanoparticle electrodes.
Format: PDF Size: 675.8 KB Download

Cite the Following Article

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics
Christian Suchomski, Ben Breitung, Ralf Witte, Michael Knapp, Sondes Bauer, Tilo Baumbach, Christian Reitz and Torsten Brezesinski
Beilstein J. Nanotechnol. 2016, 7, 1350–1360. https://doi.org/10.3762/bjnano.7.126

How to Cite

Suchomski, C.; Breitung, B.; Witte, R.; Knapp, M.; Bauer, S.; Baumbach, T.; Reitz, C.; Brezesinski, T. Beilstein J. Nanotechnol. 2016, 7, 1350–1360. doi:10.3762/bjnano.7.126

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 711.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ge, S.; Li, M.; Li, X.; Mou, C.; Wei, G. Controlled Synthesis of ZnFe2O4 Hollow Microspheres and Highly Sensitive Detection for n-Butanol Vapor. IEEE Sensors Journal 2024, 24, 8922–8928. doi:10.1109/jsen.2024.3357517
  • Ge, S.; Li, M.; Li, X.; Mou, C.; Zhu, H.; Wei, G. Template-free and controlled synthesis of ZnFe2O4 microspheres and enhanced isopropanol vapor sensing performance. Vacuum 2024, 220, 112773. doi:10.1016/j.vacuum.2023.112773
  • Tian, L.; Qian, Y.; Wang, H.; Zhao, G.; Tang, A.; Yang, H. Mineral Phase Reconfiguration Enables the High Enzyme-like Activity of Vermiculite for Antibacterial Application. Nano letters 2023, 24, 386–393. doi:10.1021/acs.nanolett.3c04141
  • Abdulwahab, K. O.; Khan, M. M.; Jennings, J. R. Ferrites and ferrite-based composites for energy conversion and storage applications. Critical Reviews in Solid State and Materials Sciences 2023, 1–49. doi:10.1080/10408436.2023.2272963
  • Sherstyuk, D. P.; Zhivulin, V. E.; Starikov, A. Y.; Pesin, L. A.; Sozykin, S. A.; Gudkova, S. A.; Vyatkin, G. P.; Kuznetsov, S. V.; Vinnik, D. A. CORRELATION BETWEEN CHEMICAL COMPOSITION AND CURIE TEMPERATURE OF A NICKEL-COBALT FERRITE. Journal of Structural Chemistry 2023, 64, 1743–1750. doi:10.1134/s0022476623090172
  • Wang, H.; Sarwar, M. T.; Tian, L.; Bao, W.; Yang, H. Nanoclay Modulates Cation Occupancy in Manganese Ferrite for Catalytic Antibacterial Treatment. Inorganic chemistry 2022, 61, 17692–17702. doi:10.1021/acs.inorgchem.2c02803
  • Sanchez-Lievanos, K. R.; Knowles, K. E. Controlling Cation Distribution and Morphology in Colloidal Zinc Ferrite Nanocrystals. Chemistry of materials : a publication of the American Chemical Society 2022, 34, 7446–7459. doi:10.1021/acs.chemmater.2c01568
  • Fan, Q.; Huang, C.; Xi, S.; Yan, Y.; Huang, J.; Saqline, S.; Tao, L.; Dai, Y.; Borgna, A.; Wang, X.; Liu, W. Breaking the Stoichiometric Limit in Oxygen-Carrying Capacity of Fe-Based Oxygen Carriers for Chemical Looping Combustion using the Mg-Fe-O Solid Solution System. ACS Sustainable Chemistry & Engineering 2022, 10, 7242–7252. doi:10.1021/acssuschemeng.2c00271
  • Bini, M.; Ambrosetti, M.; Spada, D. ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review. Applied Sciences 2021, 11, 11713. doi:10.3390/app112411713
  • Ghazkoob, N.; Shoushtari, M. Z.; Kazeminezhad, I.; Baghal, S. L. Structural, magnetic and optical investigation of AC pulse electrodeposited zinc ferrite nanowires with different diameters and lengths. Journal of Magnetism and Magnetic Materials 2021, 537, 168113. doi:10.1016/j.jmmm.2021.168113
  • Jha, A. Microwave Assisted Synthesis of Organic Compounds and Nanomaterials. Nanofibers - Synthesis, Properties and Applications; IntechOpen, 2021. doi:10.5772/intechopen.98224
  • Simon, C.; Zander, J.; Kottakkat, T.; Weiss, M.; Timm, J.; Roth, C.; Marschall, R. Fast Microwave Synthesis of Phase-Pure Ni2FeS4 Thiospinel Nanosheets for Application in Electrochemical CO2 Reduction. ACS Applied Energy Materials 2021, 4, 8702–8708. doi:10.1021/acsaem.1c01341
  • Simon, C.; Zakaria, M.; Kurz, H.; Tetzlaff, D.; Blösser, A.; Weiss, M.; Timm, J.; Weber, B.; Apfel, U.-P.; Marschall, R. Magnetic NiFe2O4 Nanoparticles Prepared via Non-Aqueous Microwave-Assisted Synthesis for Application in Electrocatalytic Water Oxidation. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 16990–17001. doi:10.1002/chem.202101716
  • McDonald, K. D.; Bartlett, B. M. Microwave Synthesis of Spinel MgFe2O4 Nanoparticles and the Effect of Annealing on Photocatalysis. Inorganic chemistry 2021, 60, 8704–8709. doi:10.1021/acs.inorgchem.1c00663
  • Sanchez-Lievanos, K. R.; Stair, J. L.; Knowles, K. E. Cation Distribution in Spinel Ferrite Nanocrystals: Characterization, Impact on their Physical Properties, and Opportunities for Synthetic Control. Inorganic chemistry 2021, 60, 4291–4305. doi:10.1021/acs.inorgchem.1c00040
  • Mkwae, S.; Kortidis, I.; Kroon, R. E.; Leshabane, N.; Jozela, M.; Swart, H. C.; Nkosi, S. Insightful acetone gas sensing behaviour of Ce substituted MgFe2O4 spinel nano-ferrites. Journal of Materials Research and Technology 2020, 9, 16252–16269. doi:10.1016/j.jmrt.2020.11.079
  • Bloesser, A.; Kurz, H.; Timm, J.; Wittkamp, F.; Simon, C.; Hayama, S.; Weber, B.; Apfel, U.-P.; Marschall, R. Tailoring the Size, Inversion Parameter, and Absorption of Phase-Pure Magnetic MgFe2O4 Nanoparticles for Photocatalytic Degradations. ACS Applied Nano Materials 2020, 3, 11587–11599. doi:10.1021/acsanm.0c02705
  • Diodati, S.; Walton, R. I.; Mascotto, S.; Gross, S. Low-temperature wet chemistry synthetic approaches towards ferrites. Inorganic Chemistry Frontiers 2020, 7, 3282–3314. doi:10.1039/d0qi00294a
  • Jadhav, V. V.; Mane, R. S.; Shinde, P. V. Introduction. Bismuth-Ferrite-Based Electrochemical Supercapacitors; Springer International Publishing, 2020; pp 1–10. doi:10.1007/978-3-030-16718-9_1
  • Nemufulwi, M. I.; Swart, H.; Mdlalose, W.; Mhlongo, G. H. Size-tunable ferromagnetic ZnFe2O4 nanoparticles and their ethanol detection capabilities. Applied Surface Science 2020, 508, 144863. doi:10.1016/j.apsusc.2019.144863
Other Beilstein-Institut Open Science Activities