Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions

Richard L. McCreery
Beilstein J. Nanotechnol. 2016, 7, 32–46. https://doi.org/10.3762/bjnano.7.4

Supporting Information

Supporting Information features the orientations of G9 fragments used to calculate the energies of Table 2 as well as a complete table of orbital energies for the molecules shown in Figure 6 and Figure 7 for both the optimized and planar geometries.

Supporting Information File 1: Additional computational data.
Format: PDF Size: 175.2 KB Download

Cite the Following Article

Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions
Richard L. McCreery
Beilstein J. Nanotechnol. 2016, 7, 32–46. https://doi.org/10.3762/bjnano.7.4

How to Cite

McCreery, R. L. Beilstein J. Nanotechnol. 2016, 7, 32–46. doi:10.3762/bjnano.7.4

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 539.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bâldea, I. Can tunneling current in molecular junctions be so strongly temperature dependent to challenge a hopping mechanism? Analytical formulas answer this question and provide important insight into large area junctions. Physical chemistry chemical physics : PCCP 2024, 26, 6540–6556. doi:10.1039/d3cp05046g
  • Moreira, A. C. L.; de Melo, C. P. Deviations and similarities between landauer's approach and the multi-electronic classical master equation in describing nanoscale transport. Physica Scripta 2023, 98, 95953–095953. doi:10.1088/1402-4896/acef6c
  • Bâldea, I. Can room-temperature data for tunneling molecular junctions be analyzed within a theoretical framework assuming zero temperature?. Physical chemistry chemical physics : PCCP 2023, 25, 19750–19763. doi:10.1039/d3cp00740e
  • Fisher, J. M.; O'Connor, J. P.; Brown, P. J.; Kim, T.; Lorenzo, E. R.; Young, R. M.; Wasielewski, M. R. Two-Dimensional Electronic Spectroscopy Reveals Vibrational Modes Coupled to Charge Transfer in a Julolidine-BODIPY Dyad. The journal of physical chemistry. A 2023, 127, 2946–2957. doi:10.1021/acs.jpca.3c01122
  • Bâldea, I. Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature. International journal of molecular sciences 2022, 23, 14985. doi:10.3390/ijms232314985
  • Harris, S. J.; Richardson, C.; Mapley, J. I.; Wagner, P.; Gordon, K. C. Investigation of the Geometric and Spectroscopic Properties of Four Twisted Triphenylpyridinium Donor-Acceptor Dyes. The journal of physical chemistry. A 2022, 126, 5681–5691. doi:10.1021/acs.jpca.2c03380
  • Moreira, A.; de Melo, C.; Cabrera-Tinoco, H. Transport through a biphenyl system as a function of torsion angle: An effective coupling model approach. Computational and Theoretical Chemistry 2022, 1214, 113756. doi:10.1016/j.comptc.2022.113756
  • Li, X.; Miu, J.; An, M.; Mei, J.; Zheng, F.; Jiang, J.; Wang, H.; Huang, Y.; Li, Q. Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application. New Journal of Chemistry 2022, 46, 10107–10116. doi:10.1039/d2nj00374k
  • Bâldea, I. Exact Analytic Formula for Conductance Predicting a Tunable Sommerfeld–Arrhenius Thermal Transition within a Single‐Step Tunneling Mechanism in Molecular Junctions Subject to Mechanical Stretching. Advanced Theory and Simulations 2022, 5. doi:10.1002/adts.202200158
  • Moreira, A. C. L.; de Melo, C.; Marques, L. Electronic transport through a biphenyl system as a function of torsion angle with a complex absorbing potential to model the self-energy in a scattering approach. Journal of Physics D: Applied Physics 2021, 55, 055306. doi:10.1088/1361-6463/ac2f17
  • Nazmutdinov, R. R.; Ulstrup, J. Atomic‐Scale Modelling of Electrochemical Systems; Wiley, 2021; pp 25–91. doi:10.1002/9781119605652.ch2
  • dos Santos, J. M.; Neophytou, M.; Wiles, A. A.; Howells, C. T.; Ashraf, R. S.; McCulloch, I.; Cooke, G. Influence of alkyne spacers on the performance of thiophene-based donors in bulk-heterojunction organic photovoltaic cells. Dyes and Pigments 2021, 188, 109152. doi:10.1016/j.dyepig.2021.109152
  • Saadatmand, M.; Shahabodini, A.; Ahmadi, B.; Chegini, S. N. Nonlinear forced vibrations of initially curved rectangular single layer graphene sheets: An analytical approach. Physica E: Low-dimensional Systems and Nanostructures 2021, 127, 114568. doi:10.1016/j.physe.2020.114568
  • Faber, J.; Antoneli, P. C.; Araújo, N. S.; Pinheiro, D. J. L. L.; Cavalheiro, E. A. Critical Elements for Connectivity Analysis of Brain Networks. Brain Informatics and Health; Springer Singapore, 2020; pp 67–107. doi:10.1007/978-981-15-6883-1_4
  • Bâldea, I. Important issues related to the law of corresponding states for the charge transport in molecular junctions with graphene electrodes. Organic Electronics 2017, 49, 19–23. doi:10.1016/j.orgel.2017.06.039
  • Sui, W.; Li, Y.; Li, J.-C. Temperature dependent electron transport in oligo (3-methylthiophene) derivative molecular devices. Organic Electronics 2017, 47, 1–8. doi:10.1016/j.orgel.2017.04.031
  • Bâldea, I. Protocol for disentangling the thermally activated contribution to the tunneling-assisted charge transport. Analytical results and experimental relevance. Physical chemistry chemical physics : PCCP 2017, 19, 11759–11770. doi:10.1039/c7cp01103b
  • Najarian, A. M.; McCreery, R. L. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions. ACS nano 2017, 11, 3542–3552. doi:10.1021/acsnano.7b00597
  • Van Dyck, C.; Ratner, M. A. Molecular Junctions: Control of the Energy Gap Achieved by a Pinning Effect. The Journal of Physical Chemistry C 2017, 121, 3013–3024. doi:10.1021/acs.jpcc.6b07855
  • Lütgebaucks, C.; Gonella, G.; Roke, S. Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution. Physical Review B 2016, 94, 195410. doi:10.1103/physrevb.94.195410
Other Beilstein-Institut Open Science Activities