Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

Nan Shen, Miriam Keppeler, Barbara Stiaszny, Holger Hain, Filippo Maglia and Madhavi Srinivasan
Beilstein J. Nanotechnol. 2017, 8, 2032–2044. https://doi.org/10.3762/bjnano.8.204

Supporting Information

After-cycling FESEM images for intermediate-sized and elongated nanorods, galvanostatic delithiation/lithiation and rate testing with error bars, ex situ XRD reflections for α-Fe2O3-E1.5 before and after cycling, and galvanostatic delithiation/lithiation for a half-cell composed of pure carbon black and PVdF (80% carbon black), cycled at 0.1 C.

Supporting Information File 1: Additional experimental results.
Format: PDF Size: 741.7 KB Download

Cite the Following Article

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes
Nan Shen, Miriam Keppeler, Barbara Stiaszny, Holger Hain, Filippo Maglia and Madhavi Srinivasan
Beilstein J. Nanotechnol. 2017, 8, 2032–2044. https://doi.org/10.3762/bjnano.8.204

How to Cite

Shen, N.; Keppeler, M.; Stiaszny, B.; Hain, H.; Maglia, F.; Srinivasan, M. Beilstein J. Nanotechnol. 2017, 8, 2032–2044. doi:10.3762/bjnano.8.204

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 810.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, X.; Jiang, G.; Wu, D.; Feng, Y. Preparation and growth mechanism of YFeO3 magneto optic crystals. Ceramics International 2024, 50, 2600–2610. doi:10.1016/j.ceramint.2023.10.195
  • Keppeler, M.; Tran, H.-Y.; Braunwarth, W. The Role of Pilot Lines in Bridging the Gap Between Fundamental Research and Industrial Production for Lithium-Ion Battery Cells Relevant to Sustainable Electromobility: A Review. Energy Technology 2021, 9, 2100132. doi:10.1002/ente.202100132
  • Xu, Y.; Wang, S.; Peng, H.; Yang, Z.; Martin, D. J.; Bund, A.; Nanjundan, A. K.; Yamauchi, Y. Electrochemical Characteristics of Cobaltosic Oxide in Organic Electrolyte According to Bode Plots: Double‐Layer Capacitance and Pseudocapacitance. ChemElectroChem 2019, 6, 2456–2463. doi:10.1002/celc.201900289
  • Gao, L.; Gu, C.; Ren, H.; Song, X.; Huang, J. Synthesis of tin(IV) oxide@reduced graphene oxide nanocomposites with superior electrochemical behaviors for lithium-ions batteries. Electrochimica Acta 2018, 290, 72–81. doi:10.1016/j.electacta.2018.09.059
  • Xiang, Y.; Yang, Z.; Wang, S.; Hossain, S. A.; Yu, J.; Kumar, N. A.; Yamauchi, Y. Pseudocapacitive behavior of the Fe2O3 anode and its contribution to high reversible capacity in lithium ion batteries. Nanoscale 2018, 10, 18010–18018. doi:10.1039/c8nr04871a
  • Boi, F. S.; Zhang, X.; Borowiec, J.; Medranda, D.; Wang, S.; Yan, K.; Zhang, J.; Wen, J. Observation of defective mixed Russian doll / jelly roll structure and pseudo-capacitor properties in carbon onions/nanotubes radial structures filled with continuous Fe 3 C crystals. Diamond and Related Materials 2018, 85, 80–88. doi:10.1016/j.diamond.2018.04.002
  • Yu, S.; Ng, V. M. H.; Wang, F.; Xiao, Z.; Li, C.; Kong, L. B.; Que, W.; Zhou, K. Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors. Journal of Materials Chemistry A 2018, 6, 9332–9367. doi:10.1039/c8ta01683f
  • Andre, D.; Hain, H.; Lamp, P.; Maglia, F.; Stiaszny, B. Future high-energy density anode materials from an automotive application perspective. Journal of Materials Chemistry A 2017, 5, 17174–17198. doi:10.1039/c7ta03108d
Other Beilstein-Institut Open Science Activities