Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

Margus Kodu, Artjom Berholts, Tauno Kahro, Mati Kook, Peeter Ritslaid, Helina Seemen, Tea Avarmaa, Harry Alles and Raivo Jaaniso
Beilstein J. Nanotechnol. 2017, 8, 571–578. https://doi.org/10.3762/bjnano.8.61

Cite the Following Article

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor
Margus Kodu, Artjom Berholts, Tauno Kahro, Mati Kook, Peeter Ritslaid, Helina Seemen, Tea Avarmaa, Harry Alles and Raivo Jaaniso
Beilstein J. Nanotechnol. 2017, 8, 571–578. https://doi.org/10.3762/bjnano.8.61

How to Cite

Kodu, M.; Berholts, A.; Kahro, T.; Kook, M.; Ritslaid, P.; Seemen, H.; Avarmaa, T.; Alles, H.; Jaaniso, R. Beilstein J. Nanotechnol. 2017, 8, 571–578. doi:10.3762/bjnano.8.61

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 509.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Peng, S.; Li, L.; Yang, D.; Miao, Q.; Fang, D. Superhigh response of ruthenium vanadate quantum dots-V2O5 nanowires to ammonia gas. Microchemical Journal 2024, 199, 110222. doi:10.1016/j.microc.2024.110222
  • Yao, P.-C.; Niu, J.-S.; Dai, G.-Y.; Jian, J.-J.; Hsu, W.-C.; Lin, K.-W.; Liu, W.-C. Ammonia sensing characteristics of an ITO-V2O5 based chemoresistive dual-type gas sensors (CDGS) decorated with platinum nanoparticles. Sensors and Actuators B: Chemical 2023, 392, 134071. doi:10.1016/j.snb.2023.134071
  • Kodu, M.; Pärna, R.; Avarmaa, T.; Renge, I.; Kozlova, J.; Kahro, T.; Jaaniso, R. Gas-Sensing Properties of Graphene Functionalized with Ternary Cu-Mn Oxides for E-Nose Applications. Chemosensors 2023, 11, 460. doi:10.3390/chemosensors11080460
  • Yao, G.; Yu, J.; Wu, H.; Li, Z.; Zou, W.; Zhu, H.; Huang, Z.; Huang, H.; Tang, Z. P-type Sb doping hierarchical WO3 microspheres for superior close to room temperature ammonia sensor. Sensors and Actuators B: Chemical 2022, 359, 131365. doi:10.1016/j.snb.2022.131365
  • Norizan, M.; Zulaikha, N. S.; Norhana, A.; Syakir, M.; Norli, A. Carbon nanotubes-based sensor for ammonia gas detection – an overview. Polimery 2021, 66, 175–186. doi:10.14314/polimery.2021.3.3
  • Buckley, D. J.; Black, N. C. G.; Castanon, E.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials 2020, 7, 032002. doi:10.1088/2053-1583/ab7bc5
  • Mounasamy, V.; Mani, G. K.; Madanagurusamy, S. Vanadium oxide nanostructures for chemiresistive gas and vapour sensing: a review on state of the art. Mikrochimica acta 2020, 187, 253. doi:10.1007/s00604-020-4182-2
  • Irimiciuc, S. A.; Hodoroaba, B. C.; Bulai, G.; Gurlui, S.; Craciun, V. Multiple structure formation and molecule dynamics in transient plasmas generated by laser ablation of graphite. Spectrochimica Acta Part B: Atomic Spectroscopy 2020, 165, 105774. doi:10.1016/j.sab.2020.105774
  • Guo, Y.; Sun, X.; Jiang, J.; Wang, B.; Chen, X.; Yin, X.; Qi, W.; Gao, L.; Zhang, L.; Lu, Z.; Jia, R.; Pendse, S.; Hu, Y.; Chen, Z.; Wertz, E.; Gall, D.; Feng, J.; Lu, T.-M.; Shi, J. A Reconfigurable Remotely Epitaxial VO2 Electrical Heterostructure. Nano letters 2019, 20, 33–42. doi:10.1021/acs.nanolett.9b02696
  • Birajdar, S. N.; Hebalkar, N.; Pardeshi, S. K.; Kulkarni, S. K.; Adhyapak, P. V. Ruthenium-decorated vanadium pentoxide for room temperature ammonia sensing. RSC advances 2019, 9, 28735–28745. doi:10.1039/c9ra04382a
  • Bezzon, V. D.; do Amaral Montanheiro, T. L.; de Menezes, B. R. C.; Ribas, R. G.; Righetti, V. A. N.; Rodrigues, K. F.; Thim, G. P. Carbon Nanostructure-based Sensors: A Brief Review on Recent Advances. Advances in Materials Science and Engineering 2019, 2019, 1–21. doi:10.1155/2019/4293073
  • Kodu, M.; Berholts, A.; Kahro, T.; Eriksson, J.; Yakimova, R.; Avarmaa, T.; Renge, I.; Alles, H.; Jaaniso, R. Graphene-Based Ammonia Sensors Functionalised with Sub-Monolayer V₂O₅: A Comparative Study of Chemical Vapour Deposited and Epitaxial Graphene †. Sensors (Basel, Switzerland) 2019, 19, 951. doi:10.3390/s19040951
  • Khambalkar, V.; Birajdar, S. N.; Adhyapak, P. V.; Kulkarni, S. K. Nanocomposite of polypyrrol and silica rods-gold nanoparticles core-shell as an ammonia sensor. Nanotechnology 2018, 30, 105501. doi:10.1088/1361-6528/aaf83d
  • Gong, T.; Zhang, X.; Fu, Y.; Zhou, G.; Chi, H.; Li, T. A facile fabrication of colorimetric graphene oxide reflecting films for ultrasensitive optical gas sensing. Sensors and Actuators B: Chemical 2018, 261, 83–90. doi:10.1016/j.snb.2018.01.137
  • Liu, M.; Chen, Y.; Qin, C.; Zheng, Z.; Ma, S.; Xiuru, C.; Xueqian, L.; Wang, Y. Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method. Beilstein journal of nanotechnology 2018, 9, 1200–1210. doi:10.3762/bjnano.9.111
  • Plutnar, J.; Pumera, M.; Sofer, Z. The chemistry of CVD graphene. Journal of Materials Chemistry C 2018, 6, 6082–6101. doi:10.1039/c8tc00463c
  • Vijayakumar, Y.; Mani, G. K.; Ponnusamy, D.; Shankar, P.; Kulandaisamy, A. J.; Tsuchiya, K.; Rayappan, J. B. B.; Reddy, M. V. R. V2O5 nanofibers: Potential contestant for high performance xylene sensor. Journal of Alloys and Compounds 2018, 731, 805–812. doi:10.1016/j.jallcom.2017.10.056
  • Mounasamy, V.; Mani, G. K.; Ponnusamy, D.; Tsuchiya, K.; Prasad, A. K.; Madanagurusamy, S. Template-free synthesis of vanadium sesquioxide (V2O3) nanosheets and their room-temperature sensing performance. Journal of Materials Chemistry A 2018, 6, 6402–6413. doi:10.1039/c7ta10159g
Other Beilstein-Institut Open Science Activities