Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

Mohamed Hamed Misbah, Mercedes Santos, Luis Quintanilla, Christina Günter, Matilde Alonso, Andreas Taubert and José Carlos Rodríguez-Cabello
Beilstein J. Nanotechnol. 2017, 8, 772–783. https://doi.org/10.3762/bjnano.8.80

Supporting Information

Supporting Information File 1: MALDI-TOF spectra, NMR spectra, ATR-IR spectra, SEM micrographs, EDXS analysis are presented.
Format: PDF Size: 526.1 KB Download

Cite the Following Article

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization
Mohamed Hamed Misbah, Mercedes Santos, Luis Quintanilla, Christina Günter, Matilde Alonso, Andreas Taubert and José Carlos Rodríguez-Cabello
Beilstein J. Nanotechnol. 2017, 8, 772–783. https://doi.org/10.3762/bjnano.8.80

How to Cite

Misbah, M. H.; Santos, M.; Quintanilla, L.; Günter, C.; Alonso, M.; Taubert, A.; Rodríguez-Cabello, J. C. Beilstein J. Nanotechnol. 2017, 8, 772–783. doi:10.3762/bjnano.8.80

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.0 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Misbah, M. H.; Quintanilla-Sierra, L.; Alonso, M.; Rodríguez-Cabello, J. C.; Santos, M. "In-situ" formation of elastin-like recombinamer hydrogels with tunable viscoelasticity through efficient one-pot process. Materials today. Bio 2024, 25, 100999. doi:10.1016/j.mtbio.2024.100999
  • Guillem-Marti, J.; Vidal, E.; Girotti, A.; Heras-Parets, A.; Torres, D.; Arias, F. J.; Ginebra, M.-P.; Rodriguez-Cabello, J. C.; Manero, J. M. Functionalization of 3D-Printed Titanium Scaffolds with Elastin-like Recombinamers to Improve Cell Colonization and Osteoinduction. Pharmaceutics 2023, 15, 872. doi:10.3390/pharmaceutics15030872
  • Yi, J.; Liu, Q.; Zhang, Q.; Chew, T. G.; Ouyang, H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022, 282, 121414. doi:10.1016/j.biomaterials.2022.121414
  • Zhang, F.; Cheng, Z.; Ding, C.; Li, J. Functional biomedical materials derived from proteins in the acquired salivary pellicle. Journal of materials chemistry. B 2021, 9, 6507–6520. doi:10.1039/d1tb01121a
  • Misbah, M. H.; Doweidar, H. Transformation of Li4P4O12 rings into LiPO3 chains by CoO or CuO doping: Crystallization-induced reduction of photoluminescent Cu+ to plasmonic Cu° glass-ceramics. Ceramics International 2021, 47, 12695–12705. doi:10.1016/j.ceramint.2021.01.129
  • Goel, H.; Gupta, N.; Santhiya, D.; Dey, N.; Bohidar, H. B.; Bhattacharya, A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. International journal of biological macromolecules 2021, 174, 240–253. doi:10.1016/j.ijbiomac.2021.01.166
  • Mbundi, L.; González-Pérez, M.; González-Pérez, F.; Juanes-Gusano, D.; Rodríguez-Cabello, J. C. Trends in the Development of Tailored Elastin-Like Recombinamer-based Porous Biomaterials for Soft and Hard Tissue Applications. Frontiers in Materials 2021, 7, 412. doi:10.3389/fmats.2020.601795
  • Ibáñez-Fonseca, A.; Flora, T.; Acosta, S.; Rodríguez-Cabello, J. C. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix biology : journal of the International Society for Matrix Biology 2019, 84, 111–126. doi:10.1016/j.matbio.2019.07.003
  • Luo, M.; Gao, Y.; Yang, S.; Quan, X.; Sun, D.; Liang, K.; Li, J.; Zhou, J. Computer simulations of the adsorption of an N-terminal peptide of statherin, SN15, and its mutants on hydroxyapatite surfaces. Physical chemistry chemical physics : PCCP 2019, 21, 9342–9351. doi:10.1039/c9cp01638d
  • Spencer, P.; Ye, Q.; Song, L.; Parthasarathy, R.; Boone, K.; Misra, A.; Tamerler, C. Threats to adhesive/dentin interfacial integrity and next generation bio-enabled multifunctional adhesives. Journal of biomedical materials research. Part B, Applied biomaterials 2019, 107, 2673–2683. doi:10.1002/jbm.b.34358
  • Song, L.; Ge, X.; Ye, Q.; Boone, K.; Xie, S.-X.; Misra, A.; Tamerler, C.; Spencer, P. Modulating pH through lysine integrated dental adhesives. Dental materials : official publication of the Academy of Dental Materials 2018, 34, 1652–1660. doi:10.1016/j.dental.2018.08.293
  • Shoueir, K. R.; El-Sheshtawy, H. S.; Misbah, M.; El-Hosainy, H.; El-Mehasseb, I. M.; El-Kemary, M. Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@MnFe2O4. Carbohydrate polymers 2018, 197, 17–28. doi:10.1016/j.carbpol.2018.05.076
Other Beilstein-Institut Open Science Activities