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Abstract
A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design them effec-
tively for regulated use. Although NMs are utilized in therapeutics, their cytotoxicity has attracted great attention. Nanoscale quan-
titative structure–property relationship (nano-QSPR) models can help in understanding the relationship between NMs and the bio-
logical environment and provide new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the
study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta poten-
tial and obtaining the toxicity profile regarding cell damage in the treatment of cancer cells. To achieve this, QSPR modeling was
first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The
features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that lack such infor-
mation. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to
understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had
the potential to influence oxidative damage through free radical accumulation, which could lead to changes in the survival rate of
cancerous cells. The developed QSPR and quantitative structure–activity relationship models also give hints regarding safer design
and toxicity assessment of MeOx NMs.
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Introduction
Engineered nanoparticles have become an integral part of our
daily lives in consumable products and commercial goods.
Their versatile tunable properties have made nanomaterials a
center of innovation in different areas [1]. However, the innova-

tion of nanomaterials (NMs) is hindered because of potential
adverse effects. It is believed that small particles can enter the
body through inhalation, ingestion, and skin penetration and
have the potency to interact with macromolecules for a long
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period. Many studies have demonstrated that metal oxide nano-
particles (MeOx NPs) are toxic and tend to have adverse effects
on living organisms and the environment [2-6]. The toxicity of
NPs depends on various structural (intrinsic) [7] and extrinsic
properties. Depending on the dispersing environment, nanopar-
ticles can easily agglomerate into particles with larger diameter.
Upon intake by organisms, depending on the pH value, these
agglomerations disintegrate again becoming a source for toxins
in the body [8]. The formation of agglomerated NPs depends
upon the surface charge of the NPs, which is believed to stabi-
lize and prevent agglomeration of NPs. As no experimental
techniques are available to measure the surface charge directly,
its value is measured through the zeta potential (ζ) in a given
medium [9]. Zeta potential is the electrostatic potential at the
electrical double layer surrounding the NPs in solution. It is
closely related to suspension stability and morphology. In
metals, the zeta potential can be altered by altering pH, concen-
tration, and conductivity of the components of NPs [10]. Zeta
potential can provide information regarding the fate, behavior,
and toxicity of NPs in the environment as well as in biological
systems. Since the cell membrane is negatively charged, the
interaction between NPs and cell membrane or organelles can
be highly influenced by the zeta potential. There is an increased
interest in integrating data on metal oxides in the field of nano-
toxicology that would be able to predict toxicity based on
measured properties. Indeed, there are several studies related to
the zeta potential and its behavior in solutions and biological
systems [11]. Comparable zeta potential measurements across
various studies may allow one to find correlations regarding the
behavior of different types of NMs. These correlations can then
enable the prediction of the behavior of novel NMs based on
their properties. As the zeta potential is a system-dependent
extrinsic property, it depends on both particle and medium. The
behavior of NPs can also change depending on the formation of
a protein corona. The formation of a protein corona on the sur-
face of NPs, which influences the interaction with cell mem-
branes or proteins, is also associated with zeta potential and sur-
face charge. Very limited studies have reported the influence of
zeta potential, surface charge, hydrophobicity, and biocompati-
bility on NP toxicity. These properties of NPs determine their
toxicity and interaction with the cell membrane damaging
human health and the environment [12]. The toxic effect of NPs
can be used as a medical treatment for diseases at the cellular
level, that is, targeting and destroying cancerous cells. To date,
few studies have reported on the mechanism of apoptosis of
cancerous cells after metal oxide treatment, which still remains
unclear. Traditional approaches are very costly, time-consum-
ing, involve a lot of resources and lead to ethical implications;
also, they are inadequate in addressing the safety concerns
regarding new NPs in this rapidly growing field. Therefore,
computational-based approaches are effective methods in risk

assessment. Among them, quantitative structure–property rela-
tionship (QSPR) models seem to be the most promising method
[13]. However, the physicochemical and structural diversity of
metal oxide nanoparticles (MeOx NPs) poses significant chal-
lenges in determining their toxic effect on living cells [14,15].
Works related to nanoscale toxicity modeling have been
published [16-20] to predict the toxicity profile of MeOx NPs
on various cell lines and species. The most important criterion
to improve nanoscale toxicity models is the selection of the
appropriate structural descriptors of NPs. Periodic table-based
descriptors have been a promising tool in predicting toxicity
profiles and risk assessment of MeOx NPs with high predic-
tivity and interpretability [21-25]. This type of descriptors can
indicate relevant features and mend the mechanism interpreta-
tion. Some properties (size, zeta potential, molecular weight,
mass percentage of metal elements, and cation charge) are in-
vestigated to have a better understanding of the structure of NPs
and its influence on toxicity.

Methods and Materials
Dataset
The study is based on two datasets, that is, dataset I (zeta poten-
tial) and dataset II (cell membrane damage). Dataset I consists
of 18 metal oxide nanoparticles (MeOx NPs) with stoichiome-
tries of MO, MO2, MO3, M2O3, and M3O4. This data was ob-
tained from Cao et al. [26], where the zeta potential of MeOx
NPs was measured in a cell culture of 20% fetal bovine com-
plete medium. Dataset II was taken from Toropova et al. [27],
where cell damage measurement was performed based on the
uptake of propidium iodide (PI). The dataset is related to four
doses (50, 100, 150, and 200 μg/mL) and exposure times
ranging from 1 to 7 h, which results in 132 MeOx NPs data
points. The detailed dataset is provided in Supporting Informa-
tion File 2, Section S1.

Descriptor calculation
Selecting the appropriate descriptors is crucial for property and
toxicity modeling. Quantitative values of chemical features
(descriptors) play a significant role in determining the target
endpoint. Therefore, in this study, we have calculated periodic
table-based descriptors (PT descriptors) for calculating the rele-
vant features contributing to the respective property and toxici-
ty endpoint. Physicochemical features encoding the informa-
tion of MeOx NPs into PT descriptors were used to build
prediction models for zeta potential and cytotoxicity (cell
damage). The basic information of MeOx NPs was directly
taken from the periodic table and some were calculated with the
Elemental Descriptor Calculator software available from
(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/
other-dtc-lab-tools?authuser=0), termed first-generation peri-
odic table descriptors. Also, second-generation PT descriptors
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were calculated using relevant formulas [28]. These descriptors
were calculated without any expert intervention and are inde-
pendent of size variations.

Splitting of the data sets
Splitting of the datasets into training sets and test sets is essen-
tial for developing statistically robust nano-QSPR models. Each
of the datasets, that is, the zeta potential dataset and cell damage
dataset, was divided into training and test sets with a ratio of 7:3
using the dataset division software in the DTC lab software
suite (http://teqip.jdvu.ac.in/QSAR_Tools/). Accordingly, thir-
teen compounds were in the training set and five compounds in
the test set for the zeta potential dataset; for the cell damage
dataset, 111 compounds were present in the training set, and the
remaining 21 compounds were in the test set. The training set
compounds were used for feature selection and model develop-
ment; the test set was utilized for assessing the predictivity of
the developed model.

Model development
Zeta potential QSPR model
To develop the property-based QSPR model, the training set
was utilized for model development. The training set of 13
compounds was processed through feature selection via step-
wise regression and genetic algorithm (GA) [29]. After feature
selection, the training set was utilized for model development
through stepwise regression using the MINITAB software
(Minitab Inc., USA, https://www.minitab.com). A multiple
linear regression (MLR) model was obtained with three descrip-
tors keeping the F values to enter and remove 4 and 3.9, respec-
tively. Finally, a PLS (partial least squares) model was de-
veloped with the selected features from the MLR model. The
developed PLS model consisted of 1 LV (latent variable), which
was also developed in the MINITAB software.

Cell damage QSPR model
The previously developed QSPR model (dataset I) was utilized
to calculate the zeta potential of the MeOx NPs in the cell
damage dataset (dataset II), which lacks the zeta potential infor-
mation (imputation of sparse data). The zeta potential was used
as a descriptor in the model development along with the PT
descriptors. Although the solvents used for testing metal oxides
in both datasets differ, the work involves correlating the zeta
potential data (experimental or computed) with the cell damage
model as a descriptor. Cao et al. [26] also used zeta potential as
one of the determinants for the modeled endpoint. The zeta
potential of all data points was determined in the same solvent,
and this does not contribute to the variations in zeta potential
values due to solvents. This work is similar to imputation in
quantitative structure–activity relationship (QSAR) modeling,
where a missing value is replaced by a predicted value from

another model [30]. The training set with 111 MeOx NPs after
feature selection through GA was further used for model devel-
opment. The model development was performed with stepwise
regression using the MINITAB software followed by the best
subset selection method. Further, to enhance the quality of
predictions for the test set, we have performed a chemical read-
across approach for the developed MLR model with eight
descriptors.

Model validation
The validation procedure is the prerequisite for the application
of nano-QSPR models. Rigorous validation of the developed
models was performed following principles of the Organization
for Economic Cooperation and Development [31]. Validation
of the model includes both internal and external validation.
Internal validation indicates the robustness and fit of the de-
veloped model applying the training set, whereas the test set in-
dicates the predictivity of the developed model for new NMs.
Common internal validation methods include the leave-one-out
cross-validation ( ) algorithm and the Y-randomization
test [32,33]. The model fit ability is expressed by the determina-
tion coefficient (R2) and mean absolute error (MAE). For
judging the external predictivity for the test set, we chose the

 and  metrics. According to Golbraikh and Tropsha
[34], R2 should be greater than 0.6 and  should be greater
than 0.5 to meet the standard requirements of external valida-
tion. A true external set was also used to evaluate the predicting
power of the model. This was done using the prediction relia-
bility indicator (PRI) tool available from the DTC lab software
tools (http://teqip.jdvu.ac.in/QSAR_Tools/). To further validate
model 2 for the similarity-based prediction, we have performed
chemical read-across analysis.

Prediction reliability indicator (PRI) tool
Ensuring the reliability of predictions for a new set of data is a
vital task. By making robust predictions based on molecular
features, we can estimate the external set accurately. In this
study, we used the Prediction Reliability Indicator tool [35]
(http://teqip.jdvu.ac.in/QSAR_Tools/) to predict the response of
a true external set comprising 49 MeOx NPs. The tool catego-
rizes the prediction quality as good, moderate, or bad, based on
certain scoring rules. To assess the predictive power of the de-
veloped QSPR models, we used the QSPR model (model 1 with
zeta potential endpoint) to predict the response of the external
set. Figure 1 shows the overall workflow of the present work,
highlighting our confident approach to the study.

Read-across analysis
The read-across technique is a reliable and scientifically proven
method to predict the endpoint of a new compound, also known
as the target compound. This technique involves utilizing data
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Figure 1: Workflow for developing QSPR (model 1) and QSAR (model 2) models.

from similar substances that have a regular pattern resulting
in structural similarity and similar physicochemical, toxicoki-
netic, toxicodynamic, and ecotoxicological properties [36].
Therefore, after selecting the appropriate descriptors from the
PLS model (model 2), we have applied the Quantitative Read-
Across v4.0 tool available from our laboratory website (https://
sites.google.com/jadavpuruniversity.in/dtc-lab-software/home).
This tool uses a similarity-based approach based on Euclidean
distance, Gaussian kernel function, and Laplacian kernel
function. The method requires optimization of the hyperparame-
ters (sigma and gamma values, distance, and similarity thresh-
olds). To ensure the best results, we used dataset 2, which we
divided into a 70% training set and a 30% test set. We further
divided the training set into a sub-training and sub-test set to
fine-tune the hyperparameters by changing the default setting.
Finally, we used the best hyperparameters to predict the
external set and achieved the best possible results through a
rigorous process.

Applicability domain
A nano-QSPR model should have a clear range of applicability
domains [37]. Robustness and predictivity regarding new com-

pounds are based on the similar physicochemical properties of
the compounds in the training set, depending on which, the
model chemical space is developed. In the present study, the
commonly used Williams plot [38] method was employed to
determine whether the compound is within the chemical domain
of the model or outside. The vertical axis represents cross-vali-
dated standardized residuals whereas the horizontal axis repre-
sents leverage values (h). This index measures the similarity be-
tween the new chemicals and the ones in the training set. The
compound prediction is said to be reliable if h is less than the
critical value (h*). Here, h* is the warning leverage in the
Williams plot or applicability domain; compounds lying above
this critical value are considered as outliers. The critical
leverage h* is calculated as h* = 3p/n, where p stands for the
number of modeled variables plus one and n stands for the data
size of the training set used in model development. Compounds
with a cross-validation standardized residual greater than three
standard deviations can be considered as Y-outliers.

Results and Discussion
To explore the physiochemical properties influencing the zeta
potential of the MeOx NPs, property-based modeling was
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Figure 2: Bubble plot for dataset 1 (model 1) and dataset 2 (model 2).

Figure 3: Williams plot for cell damage endpoint (model 2).

performed considering the zeta potential as the Y-response
(model 1). Model 1 was developed with basic periodic table-
based descriptors. The different validation metrics showed the
models to be robust and of good predictivity. Furthermore, tox-
icity-based modeling (model 2) was conducted to illustrate the
impact of zeta potential on BEAS-2B cell damage. The
modeling aimed to create robust and predictive property- and
toxicity-based models capable of predicting novel MeOx NPs
with enhanced features. Figure 2 shows the bubble plots for
both dataset 1 and dataset 2. The green and red colors indicate
the positive and negative coefficients of the respective descrip-

tors. The size of the bubble represents the importance of the
descriptors; smaller bubbles indicate less contribution to the
respective endpoints than larger bubbles. The Y-randomization
plot and loading plot are also reported in Supporting Informa-
tion File 1 and Supporting Information File 2, Figure S1 and
Figure S2. The Williams plot in Figure 3 shows that three com-
pounds were outliers in the cell damage dataset. According to
the PRI tool estimation on a true external set, out of 49 MeOx
NPs, we confidently predicted 39 with good accuracy using this
simple tool. This means that we were able to make predictions
for untested metal oxides with great confidence.
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Figure 4: Zeta potential formation and influence phenomenon in respect to the modeled descriptors.

QSPR model for zeta potential
The zeta potential is the key parameter from the regulatory
point and can directly affect the NPs’ behavior in solution and
their interaction with biological organisms (Figure 4). 18 MeOx
NPs were modeled against the zeta potential endpoint to obtain
the partial least squares (PLS) model with one latent variable
(LV).

Model 1 (PLS)

(1)

Model 1 considers three descriptors to evaluate the influence of
the zeta potential based on basic attributes. Here, Ntrain and Ntest
stand for the number of training and test set compounds, respec-
tively. R2 is the determination coefficient;  is the leave-
one-out cross validation determination coefficient. Again, 
and  were calculated for external data predictions. The
model parameters suggest the good predictive ability of the de-
veloped model as it passes various statistical criteria [34]. The
descriptors depicted in the model also interpret the influence of
the zeta potential as discussed below.

The descriptor “χox” pertains to the oxidation number of the
metal, which represents the hypothetical charges within an

atom. The zeta potential decreases as the oxidation number
increases, as indicated by the negative coefficient of the
descriptor. A lower (negative) oxidation number indicates a
higher electronegativity of the metal, which determines the elec-
tron distribution in a molecule. The metal’s electronegativity
also influences the catalytic property of the cationic form and
the surface charge formed around the metal oxide surface. The
highly electronegative surface of MeOx NPs [39] affects their
behavior and stability, thus determining the net charge of ions
in a given medium. Certain MeOx NPs are unstable and tend to
agglomerate. NPs attract negative or positive ions from the me-
dium to build a diffusion double layer. The electronegativity of
the NPs also depends on the pH value of the medium [40]. In
colloidal solutions, negatively charged metal oxides decrease
the zeta potential, which reflects stability based on the aggrega-
tion phenomenon. This is well observed in MeOx NPs, where
an increase in the oxidation number (χox) decreases the zeta
potential. In WO3 NPs, the χox value is 6 and the zeta potential
value is −23 mV; for NiO NPs, the χox value is 2, and the zeta
potential value is 34.4 mV.

The “valence electron potential” (−eV) determines the elements’
reactivity and is based on the charge of the valence electrons
and the ionic radius:

Here, k is a proportionality factor expressing the energy of the
valence electrons in electronvolts. n is the valence, and r is the
ionic radius.
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This descriptor negatively contributes to the zeta potential
suggesting that with the increase of the valence electron poten-
tial of the metal, there will be a decrease in zeta potential value.
This has been observed in Mn2O3 NPs, which have a valence
electron potential value of 220eV and a zeta potential of
−15.9 mV. Co3O3 NPs show the opposite result; the decrease in
the valence electron potential value (38eV) shows an increase in
zeta potential value (22.6 mV). MeOx NPs with large ionic
radius tend to have low valence electron potential, as it is
inversely proportional to the ionic radius of the NPs. NPs with
lower valence potential allow for an easier formation of the
electrostatic double layer (EDL). If the solution with NPs shifts
to lower ionic strength, then the zeta potential increases as the
EDL expands to balance the electrostatic force, thus allowing
for the dispersion of NPs.

The descriptor “tot_metal_alpha” defines the core environment
of the metal. It also defines the molecular bulk of the metal
oxide. This descriptor has vital characteristics that are heavily
influenced by the number of metals present in the metal oxide.
Furthermore, the electronegativity of the metal is a crucial
factor in determining the surface charge and stability of the NPs
in the solution. The positive regression coefficient suggests that
an increase in the surface charge of the metal helps the NPs
to remain dispersed in the media and thus avoids flocculation.
This phenomenon is observable in Yb2O3 NPs with a high
tot_metal_alpha value (13.6) and the highest zeta potential
(46 mV); in contrast, SnO2 NPs with a descriptor value of 2.88
have a zeta potential value of −20.5 mV.

QSPR model for cell damage
Model 2 (PLS)

(2)

Model 2 utilizes eight descriptors to evaluate crucial attributes
that can impact cell damage. Equation 2 shows the number of
compounds used in the training and test sets represented by
Ntrain and Ntest, respectively. Additionally, R2 and , the
determination coefficient and leave-one-out (LOO) cross-vali-

dation coefficient, were employed. Furthermore, external data
prediction calculations were made using  and . The
model parameters demonstrate exceptional predictive ability,
meeting various statistical criteria [34]. The descriptors used in
the model were well interpreted and are comprehensively dis-
cussed in a later section. Note that the zeta potential has
appeared as a significant descriptor in defining the cell damage.
On removal of zeta potential as a descriptor, the model quality
decreases. Predictions from one model as a descriptor for
another model are made to fill the data gap or to determine the
missing values. This approach is similar to the imputation meth-
odology, which creates a model embedded within another
model. Instead of using dummy variables for quantitative
prediction, a useful imputation method can predict various types
of inputs. It is worth noting that many existing works utilize
imputation techniques [41]. In QSAR studies, it is not unusual
to use a model-derived prediction as a descriptor for the devel-
opment of other models or for prediction when the endpoint has
been tested under different experimental or varying conditions
(as in the case of interspecies modeling). This approach is reli-
able and aims to establish a correlation between different condi-
tions to fill the data gap.

Chemical read-across analysis
The developed QSPR (PLS) model for dataset 2 provided eight
descriptors that were utilized for read-across predictions. Three
similarity-based prediction methods, namely Euclidean dis-
tance (ED)-based, Gaussian kernel (GK) similarity-based, and
Laplacian kernel (LK) were employed. Upon optimizing the
dataset, it was concluded that the read-across based on the
Euclidean distance (RA-ED) function outperformed the others,
as shown in Table 1. The Read-Across v4.0 software [42] was
utilized for this work. After performing RA, the resultant 
increased from 0.65 to 0.766.

Interpretation of the descriptors
The periodic table descriptor ∑χ/nO stands for the total metal
electronegativity in a specific metal oxide relative to the num-
ber of oxygen atoms. This descriptor takes into account the
crucial role of oxygen atoms in causing cell damage. With
regard to the cell damage endpoint, this descriptor has a nega-
tive effect, indicating that an increase in the number of oxygen
atoms compared to the electronegativity sum results in a lower
ratio of the descriptor. Thus, a high concentration of oxygen
atoms in the metal oxide can expedite the oxidative damage
process, leading to the production of more reactive oxygen
species (ROS) and causing more cell damage. CoO NPs show
that a high ∑χ/nO value (1.88) leads to less cell damage
(−4.38), whereas a low value (∑χ/nO = 0.77) leads to more cell
damage (−2.50) as observed for TiO2 NPs. The production of
ROS can enhance the catalytic activity of Fenton/Fenton-like
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Table 1: Results for read across prediction using different similarity-based approaches.

Feature combinations Hypothesis Hyper parameters Statistical parameters

σ γ Distance
threshold

Similarity
threshold

MAE RMSEP

Model 2
(132 MeOx NPs)
8 descriptors
(7 LVs)

RA-ED 1.75 1.75 1 0 0.766 0.765 0.177 0.252
RA-GK 0.764 0.763 0.178 0.254
RA-LK 0.724 0.724 0.195 0.274

reactions, but can also result in cellular damage [16]. ROS can
break down the basic components of the cell, including DNA,
proteins, and lipids. ROS can cause double-strand breaks in
DNA by converting guanine to 8-oxoguanine. This conversion
can lead to mispairing with adenine, resulting in transversion
mutations. Proteins can also be damaged when their amino acid
side chains are oxidized by ROS. Exposure of lipids to ROS can
result in lipid peroxidation, which can cause cell damage and
generate reactive by-products that further damage the cell.

The second-generation periodic table-based descriptor
“sq_sum_epsilon/N” (∑ε/N)2 stands for the sum of electronega-
tivity of the atoms of the metal oxide, which is calculated based
on the electronegativity count (∑ε) of the oxides, scaled by the
number of atoms:

Here, εmetal and εoxy are the electronegativity count of metal
and oxygen atoms, respectively, and Nmetal and Noxy are, re-
spectively, the number of metal and oxygen atoms. The posi-
tive coefficient of the descriptor in Equation 2 indicates that an
increase in electronegativity favors the rise in cell damage as in
CuO nanoparticles, where a high (∑ε/N)2 value (9.93) causes
more cell damage (−2.87), whereas Sb2O3 nanoparticles with
low electronegativity ((∑ε/N)2 = 0.018) are less toxic (−4.625).
Because of the high electronegativity, the atoms pull electrons
from their neighboring atoms or molecules, leading to the de-
velopment of an electrostatic bond with proteins in biological
systems. The high electronegativity also influences the forma-
tion of metal cations. The increase of catalytic properties of
metal cations enhances the toxicity through the generation of
ROS, causing damage to cell membranes [16]. The high electro-
negativity helps in removing electrons from molecules, produc-
ing free radicals. Free radicals are unstable and highly reactive.
These short-lived radicals are unable to leave the sub-cellular
location where they are generated without being reduced,
leading to oxidative damage [43]. The presence of high-electro-
negativity metals in the cellular membrane can lead to the
leakage of cellular content [22].

The “D1metal” descriptor signifies the total number of metal
atoms in the MeOx NP composition. An increase in the number
of metals can have a detrimental effect on cells by impacting
ROS generation. The positive coefficient of the D1metal
descriptor indicates that an increase in the metal fraction in
MeOx NPs causes more cell damage (−2.63) as observed in
Fe3O4 NPs (D1metal = 3). In contrast, CoO NPs with a low
metal fraction (D1metal = 1) nanoparticles cause less cell
damage (−4.375). Metal ions can generate reactive hydroxyl
radicals, resulting in oxidative damage to proteins. Moreover,
they can bind non-specifically to amino acid residues and
replace existing metal ions at active sites of enzymes, leading to
abnormal protein folding. Protein aggregation diseases are a
type of neurodegenerative diseases that occur when proteins
lose their structure and are deposited in the brain. These
diseases are the most common type of neurodegenerative
diseases. Many of these structures are highly toxic to cells [44].
The folding of proteins also causes damage to the immune
system, because certain structures do not induce the production
of antibodies [45].

The descriptor “Metal alpha” (αmetal) defines the core environ-
ment of the metal. This descriptor represents the ratio of the
number of core electrons to the number of valence electrons.
The Metal alpha descriptor describes the electron density of the
metal. This descriptor is calculated using Equation 3:

(3)

Here, λ is (Zmetal − Zvmetal)/Zvmetal and μ is 1/(PNmetal), where
Zmetal is the atomic number, Zvmetal stands for the valence elec-
trons of the metal, and PNmetal stands for the periodic number in
the periodic table. The negative coefficient of the descriptor
signifies the low electron affinity of the metal oxide to accept
electrons. This means that the metal has a propensity of having
a cationic charge, which leads to the catalytic power of metal
cations. For example, in WO3, the metal alpha value is 7.2 and
cell damage is −4.57. In contrast, Al2O3 with a metal alpha
value of 1.66 causes higher damage to cells (−2.8). Metal
cations are more harmful than normal nanoparticles. This is
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because their electropositivity and inherent toxicity increase
significantly with atomic weight. In addition, the formation of
metal–ligand bonds has a direct impact on the metal’s toxicity.
Furthermore, it is a well-established fact that each metal has an
affinity constant for various ligands, which means that most
metal cations can form stable complexes with a wide variety of
ligands, further increasing their potential toxicity.

In the field of physical chemistry, the zeta potential is a crucial
parameter that measures the surface charge of particles relative
to their size. In colloidal systems, the zeta potential is widely
used as an indicator to reflect the stability. It is important to
note that NPs with higher positive charges can be more harmful
than those with higher negative charges. Moreover, positively
charged NPs interact more significantly with cells, leading to
greater cell damage. Another crucial factor to consider is that
NPs with a higher zeta potential, regardless of their charge, are
more easily absorbed by cells due to the electrostatic interac-
tion between dispersed particles and the effective electric
charge on the surface of the NPs [40]. This feature is particular-
ly relevant to their biological activity, especially their ability to
bind to and be absorbed by cell membranes. For instance,
Cr2O3 NPs have a high zeta potential (2130 mV) and a high cell
damage propensity, whereas Y2O3 NPs with a low zeta poten-
tial (−23 mV) cause less damage to cells (−4.5). The increase in
zeta potential enhances the accumulation of nanoparticles on the
surface of cells. The intensity of accumulation determines the
toxicity of the nanoparticles. The concept of zeta potential plays
a vital role in adhesion to the hydro–water interface and solid
surfaces, providing an idea about the viability and permeability
of the cell membrane under stress. As most of the cell surface
carries a negative charge, metals with higher zeta potential can
easily enter the cell and increase the production of ROS. Also,
they can have a mechanical effect on the membrane, leading to
depolarization of the membrane and cell damage.

The “Electron Active M” descriptor is a representation of the
number of electrons that an active metal possesses. Active
metals are known for their quick and robust reactions owing to
the electron arrangement in their structure. These metals contain
free electrons in their outermost shell that can readily create a
cation by interacting with other atoms and initiating a chemical
reaction. The delocalized electrons can easily interact with
macroproteins, leading to the acceleration of damage to the bio-
logical membrane. A positive coefficient of Electron Active M
indicates more oxidative stress and more damage to the cell due
to an increase in free radicals. WO3 has a high descriptor value
of 74 resulting in high cell damage (−2.8), while Cr2O3 NP has
a low descriptor value of 24 leading to low cellular damage
(−4). Transition metals are capable of forming coordinate com-
plexes with the imidazolyl group of histidine. These metal ions

are redox-active and can play a crucial role in the production of
ROS within the cell. The reduced forms of these redox-active
metal ions are involved in the Fenton reaction, which generates
hydroxyl radicals from hydrogen peroxide. Similarly, the
Haber–Weiss reaction involves the oxidized forms of redox-
active metal ions and superoxide anions, which generate the
reduced form of the metal ion. This reduced form can then be
coupled to Fenton chemistry to produce hydroxyl radicals. ROS
further accelerate the damage of the cell.

“Valence” (V) is a factor that contributes to cell damage. It indi-
cates the number of electrons in the outermost shell of an atom
that are available for chemical bonding and is similar to other
descriptors that provide information about free electrons. The
insights obtained from the developed model 2 strongly suggest
that an increase in valence (7) leads to a decrease in cell damage
(−3), as observed in MnO3 NPs. This is supported by the nega-
tive regression coefficient of the descriptor. Conversely, a low
valence (2) leads to greater cell damage (−2), as seen in ZnO
NPs. Atoms with fewer electrons in their outer shell tend to lose
them and become metal cations, which can damage cells [16].
Cations aid in the transportation of metal ions across the cell
surface by interacting with its negatively charged surface.
Unfortunately, this interaction can lead to DNA damage
through processes such as delocalization, redox chemistry, and
the generation of ROS.

Our research aimed to examine how the time of exposure to
metal oxide affects cell damage, regardless of other physio-
chemical properties of MeOx NPs. Our findings indicate that
exposure time plays a crucial role in cell damage. Prolonged
exposure times increase the damaging potential. For instance,
exposing cells to WO3 NP for 7 h resulted in a cell damage
score of −2.75. In contrast, exposure to Yb2O3 for only 1 h
resulted in a score of −3.5. These results demonstrate the signif-
icance of considering exposure time when evaluating the poten-
tial risks of metal oxide exposure. When living organisms are
exposed to NPs for an extended period of time, inflammatory
conditions can occur that lead to physical, muscular, and neuro-
logical degeneration, or increased intensity of oxidative stress.
This happens because longer exposure times enhance the toxici-
ty mechanism of NPs. In contrast, short-term exposure does not
affect significantly the cells. NPs can induce oxidative stress by
impairing antioxidant defenses in humans when they are chroni-
cally exposed to NPs.

Importance of the zeta potential as a
descriptor
The developed QSPR model without zeta potential descriptor
shows R2 = 0.47 and  = 0.34, which is well below the
desired acceptance criteria. The obtained results indicate that
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Figure 5: Interpretation of descriptors with respect to cell damage (endpoint) in cancer cells.

the fitting and robustness of the developed model without the
presence of the zeta potential descriptor is unsatisfactory.
Therefore, to achieve the fit and predictive power of the model,
we included the zeta potential descriptor along with the other
seven descriptors. In the presence of zeta potential, the statis-
tical quality and internal validation metrics increased (R2 = 0.62
and  = 0.54) showing the stability and predictive ability
of the model.

Utilization of the metal oxide cell damage
knowledge for cancer treatment
NPs have shown immense potential in treating various diseases
owing to their small size and high surface-to-volume ratio,
which makes them effective drug delivery systems. Metal NPs
can lead to greater signal amplification, greater sensitivity, and
higher detection. However, NPs with properties that generate
ROS can increase cell damage. In cancer cells, rapid prolifera-
tion leads to an imbalance of oxygen, abnormal structure, and
blood supply, making the tumor microenvironment (TME)
prone to hypoxic conditions [46]. Insufficient oxygen reduces
ROS generation, which decreases the efficacy of oxygen-de-
pendent therapies, such as photodynamic therapy (PDT),
chemodynamic therapy (CDT), and radiation therapy. The
information derived from the positive contribution of the
D1metal descriptor (model 2) draws attention to the fact that
metal oxides are good candidates for generating oxidative stress
in cells. The ∑χ/nO descriptor suggested a higher oxygen

requirement for damaging the cells. It indicates that a higher
fraction of oxygen in the metal oxide nanoparticles can increase
the sensitivity to PDT. Furthermore, transition metals can cata-
lyze Fenton/Fenton-like reactions [47], generating highly oxida-
tive species that can kill tumor cells. The electronegativity of
the metal oxides helps the NPs in crossing the cell membrane.
The formation of metal cations can also affect the pH value of
the cell and increase the catalytic properties of metal oxides,
thereby increasing ROS generation. Tumor cells have a mecha-
nism for dealing with hypoxia, acidosis, and high glutathione
(GSH) levels, which promote drug resistance, especially for
ROS-dependent drugs (Figure 5). However, metal oxides can
change the TME conditions by supplying oxygen and suppress-
ing hypoxia-inducible factor 1 and CD39/CD73 in T cells,
which reduces the immunosuppression effect of tumors.

Comparison with previously published
literature
This study successfully develops a QSPR model with a cell
damage endpoint that uses the zeta potential value as a
descriptor. The descriptor was calculated using another model
that used the zeta potential as the endpoint (Y-response) for its
QSPR model development. The QSPR models were developed
with simple periodic table-based descriptors that do not depend
on size or any other experimental conditions. These descriptors
are easy to calculate, less expensive, and can be calculated by
anyone without the need for expert personnel.
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Table 2: Comparison of the statistical parameters with a previous study.

Sl. no. Q2 R2
train strain R2

test MAEtest Stest

current study 0.538 0.621 0.361 0.768 0.767 0.181 0.377
previous study (best split) [27] 0.486 0.512 0.387 — 0.822 — 0.318

The study provides in-depth knowledge about the properties and
causes of toxicity of nanoparticles using simple regression-
based models. It is important to note that a direct comparison
with a previous study by Toropova [27] is not possible because
of the different data division methods (five random splits), the
use of different types of descriptors (optimal nano-descriptors),
and the dissimilar modeling methods (Monte Carlo method).
However, it is clear that the statistical metric values for the de-
veloped model in the present study are similar to those of the
previous study (the best-split results only shown) as presented
in Table 2. Furthermore, we have proposed an effective mecha-
nism to treat cancerous cells with the cell-damaging properties
of MeOx NPs.

Conclusion
The impact of nanoparticles on cell membranes has been thor-
oughly examined through nanotoxicological research and in
vitro modeling [48,49]. While the toxicity endpoint is a well-
explored topic, it is crucial to investigate non-fatal endpoints
such as cell damage. The zeta potential is a widely used param-
eter to characterize the properties of nanoparticles. However,
cell membrane damage is influenced by various factors, includ-
ing exposure time and dose. Thus, this study aimed to establish
a relationship between the properties of nanoparticles and their
toxicity, with a focus on cell membrane damage.

The study was divided into two parts. The first part involved
modeling nanoparticles against the zeta potential to determine
the features that can alter their properties. The second part
focused on the elements that can influence toxicity and damage
to the cell membrane. Both the QSPR model for the zeta poten-
tial and another model against cell damage were developed
using periodic table-based descriptors. The QSPR model (zeta
potential) was able to predict the zeta potential for MeOx NPs
without experimental values. The developed models showed
good predictivity and robustness, confirming their effectiveness.

The features obtained from the models suggest that surface
charge and electronegativity play a role in altering the zeta
potential. Additionally, an increase in oxygen count, electroneg-
ativity, formation of cationic charge, and an increase in zeta
potential can influence cell membrane damage. Based on these

findings, the authors propose that the damaging power of metal
oxide nanoparticles can be harnessed in treating cancerous cells.
This study not only identifies the features required to enhance
the properties of nanoparticles but also provides knowledge for
treating cancerous cells through cell damage techniques. The
study can pave the way for researchers to use nanoparticles in
clinical practice with confidence.
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