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Abstract

Background: Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair
represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-
activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However,
the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated.

Results: We analyze the current and the cross correlation of currents in a superconductor—ferromagnet beam splitter, including
spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a
first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor—ferromagnet beam split-
ters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and
show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev

reflection. We present results for the conductance and cross correlations.
Conclusion: Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters,

that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different
from the typical spin singlet state.

Introduction

Solid-state entanglers represent electronic analogues to the
optical setups used for Bell inequality tests. Most setups
propose a superconductor as a source of spin-entangled s-wave
Cooper pairs [1-3]. These are transferred to spatially separated
leads by the process of crossed Andreev reflection (CAR) [4,5].
Different setups have been considered in order to achieve CAR

without being dominated by elastic cotunneling or ordinary
Andreev reflection (AR) processes [6-9]. S-wave Cooper pairs
are entangled in energy and spin space. Therefore, one may
either filter the electrons of a Cooper pair in spin space (using
ferromagnets [10-12] or Luttinger liquids [2]), or in energy
space (using quantum dots [1,13], coupling to an electromag-
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netic mode [14], an appropriate voltage bias [15-18] or ac-bias
[19]). Filtering using quantum dots with large onsite interaction
has been successfully realized in experiments [20-22] and a
nonlocal resistance has been measured as a characteristic of
Cooper pair splitting. Moreover, a positive cross correlation
measured in a superconductor and normal-metal three-terminal
device gave compelling evidence for CAR [23]. However,
s-wave Cooper pairs only give access to one of the Bell states,
namely “{’_> = 1/«/5(‘T>1 ®‘¢>2 - ‘i«>1 ®‘T>2) , where the
subscripts 1 and 2 refer to two normal leads. P-wave Cooper
pairs give access to the other Bell states, especially those such
¢i> = 1/ J2([4), @), +[1), ®|1), ) involving fully spin-

polarized combinations of the two electrons. Thus, a p-wave

as

Cooper pair splitter represents the essential counterpart to
s-wave Cooper pair splitters as on-chip sources of spin-entan-
gled Einstein—Podolsky—Rosen (EPR) electron pairs [24-26].

In this paper we approach the problem of p-wave Cooper pair
splitting in two steps. First, we show that p-wave splitting may
casily be identified in a hybrid junction between a supercon-
ductor and two ferromagmets (setup shown later in Figure 1).
However, p-wave superconductors that can be easily handled in
quantum transport experiments are presently not available.
Therefore, in a second step we show how p-wave splitting can
be realized without using a p-wave superconductor. Indeed, the
previous works on the charge transfer statistics of supercon-
ductor ferromagnet beamsplitters [10,27,28] neglected the
recently predicted [29-31] and observed [32,33] effects of the
interface on charge transfer. By including a better description of
the interface one can describe the shared triplet pairs formation
between the ferromagnets. We calculate the full counting statis-
tics (FCS), which allows us to identify the corresponding
charge-transfer process and to calculate the cross correlation as
an experimentally observable quantity [23].

Results and Discussion
Superconductor—ferromagnet beam splitters
Splitting of spin-polarized p-wave Cooper pairs can easily be
identified in the conductance. From the result in [27] we find
the generalization of Beenakker’s formula [34] for the zero-bias
conductance of a beam splitter realized by a resonant level
between a superconductor and two ferromagnets:
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where I is the tunnel rate through the two barriers between the
quantum dot and the ferromagnets (both are assumed to be
equal) and I'g is the tunnel rate between the superconductor and
the quantum dot. A, refers to the energy of the resonant level.
Py and P, are the (parallel) polarizations of the ferromagnets
and o1 and o, are the spins of the electrons in a Cooper pair.

In usual s-wave superconductivity the spin directions obey 6| =
—03, and we may maximize CAR by choosing P; = 1 = —P; (or
vice versa) [10]. However, if we choose the polarizations of the
ferromagnets to be equal (i.e., P; = 1 = P») Gcar in Equation 1
becomes zero (Figure 1). The situation is reversed if we intro-
duce a spin-polarized p-wave superconductor such that 6| = o,.
Now splitting is maximized if Py = P,. Of course now for
antiparallel polarization the current is blocked (Figure 1).
Therefore p-wave splitting is easily identified in the crossed
conductance. Maximal polarization is not easy to realize in
experiment [35] but we use this assumption to illustrate the
argument. In spite of the apparent simplicity of this considera-
tion a serious problem remains: P-wave superconductors are
very rare and materials such as SrpRuQOy are hard to handle
[36].

However, recent theoretical and experimental progress showed
that the treatment of superconductor—ferromagnet interfaces
requires special care with respect to the exact form of the inter-
face and the associated spin-active nature of tunneling [37]. In
the rest of this work we want to show how a spin-active inter-
face can be used in exactly the same way as a p-wave supercon-
ductor and therefore allows the generation of the other Bell
states. In order to accomplish this goal we will show how the
transport characteristics of p-wave splitting can be imitated by

spin-active scattering.

Cumulant-generating function with spin-

active scattering

To identify the separate charge-transfer processes and to eval-
uate the conductances and cross correlations, we calculate the
FCS of charge transfer [38,39] using the generalized Keldysh
technique [40-42]. The aim is to calculate the cumulant-gener-
ating function (CGF) In y(A) of the probability distribution P(q)
to transfer g units of charge during a (long) measurement time
T x(h) = qu”‘qP(q). Partial derivatives of this function provide

direct access to the cumulants (irreducible moments) of P(q).

We model the superconductor—ferromagnet beam splitter as two
ferromagnets 1 and F2 that are tunnel-coupled to a resonant
level, which is the simplest model of a quantum dot. The super-
conductor is also coupled to the resonant level via Hy; and Hp,
which takes into account the interface effects. The result is the

Hamiltonian
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Figure 1: Summary of the possible charge-transfer processes in a superconductor—ferromagnet beam splitter. The superconductor (blue) and the two
ferromagnets (red, assumed to be fully polarized) are coupled via a quantum dot, which is realized by an InAs nanowire (brown). The polarization is
indicated by green arrows. In the upper part, the situation for s-wave superconductors is shown. The Cooper pair may split if the two ferromagnets are
antiparallelly polarized. In the lower part the reversed situation for spin-polarized p-wave superconductors is depicted. The Cooper pair may now split

only if the two ferromagnets are equally polarized.

H=Hp+Hpy+Hrp+Hrpy + Hg

2
+Hp +Hpy +Hy, @

where

Hy :zAd;’;;ica 3)

c

represents the resonant level. Throughout the rest of this exposi-
tion we use units in which e = 7 = kg = 1 and restrict ourselves
to a quantum dot on resonance A; = 0.

Ferromagnetic electrodes are described in the language of elec-
tron field operators ¥y o 5, where o = F'1, F2 using the Stoner
model with an exchange energy /., as in [43]

+
H, = Z Sk\yk,cx,cqjk,on,c
k,o

(4)

+ +

_hex,(x Z(\Pk,cx,T\Pk,cx,T - lPk,cx,~L\Plc,(>c,i« )
k

Consequently they can be described as fermionic continua with

a spin-dependent density of states (DOS) pg 4.6 = Po,a(l + 6Py),

where P, is the polarization. The superconductor is described

by using the ordinary s-wave BCS Hamiltonian

+
Hy=Y & ¥isoViso

k,o

®)

+ +

+AZ(\Pk,S,T\P—k,S,¢ ¥ siVes )
k

We express the energies of the dot and the reservoirs relative to
the superconductor chemical potential [44] such that pg= 0 and
Vo = s — Ko = —Lg is the chemical potential of the ferromag-
nets. The quasiparticle density of states in the superconductor
has the form: pg = p05|(n|/ o’ —A? , where pg is constant in
the wide-band limit. Tunneling between the superconductor and
the quantum dot is given by [45]

Hrg :ZVS Pg‘{’sﬂ (x=0)+H.c.J, ©)

o3

where Y is the corresponding tunneling amplitude between the
dot and the superconductor. The tunneling is assumed to be
local and to occur at x = 0 in the coordinate system of the
respective electrode. W 5(x) refers to the electron field operator
of the superconductor introduced in Equation 5 in position

space.
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Finally, we need a Hamiltonian approach [46] for spin-active
scattering. There are manifold effects, such as spin—orbit
coupling, magnetic anisotropy or spin relaxation, that give rise
to spin-activity of interfaces [29]. Previous studies of point
contacts used a scattering states description [29-31,47] in order
to introduce a spin-active scattering angle as a phenomenolog-
ical parameter to characterize the interface or a wave-function-
matching technique [48,49]. We adopt the simplest possible ap-
proach and follow [50-52] by introducing two tunneling Hamil-
tonians at each of the interfaces between the quantum dot and a
ferromagnet

Hrpyo = Z%,l [CNI;‘I’G,G (x=0)+ H.c.],
(e}

~ @)
Hrpog =D Yo [d;‘l’q,,c (x=0)+ Hc}

(o}

Hrp1,q describes normal spin-conserving tunneling whereas
Hrpy q refers to the spin-flip processes [V, —(x = 0) represents
an electron in the ferromagnet with opposite spin]. If we take
spin-active scattering into account in this way we have five
different tunnel couplings. In order to reduce the number of
parameters and for clarification of the discussion of spin-active
scattering effects we want to limit ourselves to a special constel-
lation of parameters as far as spin-active scattering is
concerned, namely yr11 = Yr2,1, YF1,2 = YF2,2- In this case we
define operators

Yr1ds HYF12d s

B 2 2
\/YF1,1 TYF1,2

dG

’ ®)

which allow us to rewrite the tunneling Hamiltonians in Equa-
tion 6 and Equation 7 as

Hrp o = ZY(x [dé‘l’a,c (x = 0) + H.c}, ©)

c

HTI = ZYS,I |:d(-5'—LpS,G (x = O) + H.C.:|,
(e}

(10)
Hry = Y52 [dg‘PS,,G (x=0)+ Hc}
(e}

This minimal model still reveals all of the transport properties
that we wish to discuss here. In order to access the CGF, we
introduce the counting fields for the leads attached to the
quantum dot as time-dependent fictitious parameters, that is,
counting fields in front of the creation and annihilation opera-
tors of the respective electrodes

Beilstein J. Nanotechnol. 2012, 3, 493-500.

As,1,2)(¢) takes the value +(—)A(s,1 2) on the forward/backward
branch of the Keldysh contour C. The counting fields are only
switched on during the measurement time t. In the limit of long
measurement times t, the CGF can be calculated analytically by
using a generalized Green’s function formalism that has previ-
ously been used to calculate the FCS of other quantum impu-
rity systems [53-55]. Following [56] the CGF is given by the

expectation value

Iy . A A
In XSFF (7\.,'5) = TC €Xp|—1 J‘dt (TTI‘ll + TTFZ'Z
C
(12)

As | mhs
+ TTl +Trz ) R

where & = (A, Ay, Ag) and T denotes the contour time ordering
operator. TT}”I}I - ,T%zs are abbreviations for the tunneling opera-
tors introduced in Equation 9 and Equation 10 in combination
with the substitutions defined in Equation 11.

For the FCS calculation in the limit of large measurement times
(as assumed here) we follow [40] and write the above expres-
sion using an adiabatic potential [57], which, in the limit of infi-

nitely long measuring time, is time-independent
it (.7) = —i] e (1) =-ixU (R,
0

In turn the adiabatic potential is related to the counting field
derivatives of the 7%’s introduced in Equation 12

A A
D U _ [T\ [ T
iSSia 0\ o oy
A A
TTIS TTZS
g g |~
A

where (-), is defined as (-), =1/xspr (X,T)(-) with (-) being the
ordinary expectation value with respect to the systems Hamil-
tonian in Equation 2, with the tunneling Hamiltonians rephrased

by using the substitution defined in Equation 11. The deriva-
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tives of the T"'s take the form of mixed and A-dependent

Green’s functions, e.g.,

A

e —i i

TF1\ _ N —iky /2 < + > }
— ) =— e T-d-¥ +H.c. |
o 2 %:[ C%e Loy

A

These mixed Green’s functions have to account for all orders of
the tunneling coupling. By expanding them to first order in the
relevant tunnel coupling they can all be rewritten as a product
of a bare-lead Green’s function (subscript 0) and an exact
in-tunneling-dot Green’s function. E.g., for the derivative
considered above

<TC d:s—\yl,(5>7L Y <\PLG\PIG >0 <d6d; >7» .

Therefore the remaining task is an exact calculation of the dot
Green’s function. Since the system’s Hamiltonian in Equation 2
is quadratic the Dyson equation can be solved exactly.
However, as also noted in [58], coupling of the dot to the super-
conductor automatically leads to the appearance of anomalous
dot Green’s functions of the type <d$d¢+> to second order in
the tunnel coupling to the superconductor. Additionally, the
spin-flipping tunnel contribution in Equation 10 gives rise to
correlation functions of the type <d$d$> [59]. Consequently
the full dot Green’s function for the spin species T becomes a
four-component vector of correlation functions
£<de$ >x ,<deir >}L ,<d$’dI >}L ,<d%rd$r >k ) Since the counting
ields take different signs on the backward/forward branch of
the Keldysh contour each correlation function is a 2 x 2
Keldysh matrix again. The bare-dot and lead Green’s functions
are, e.g., given in [60]. Since the solution of the Dyson equa-
tion allows all orders to be summed up in the tunneling
couplings, the result is exact and also valid at finite temperature,
as discussed also in [46].

However, the result for the average in Equation 12 is quite long.
We want to restrict ourselves to the study of the relevant aspects
of the CGF in view of the possibility of p-wave splitting only.
Comparing our method to previous treatments of supercon-
ductor hybrids, we should emphasize that also in the quasiclas-
sical Green’s function formalism [61] calculations of the current
exact-in-tunneling have been performed [62,63]. However, in
that case it was assumed that there were two tunneling contacts
to normal leads, with large spatial separation. In our case the
three leads are coupled via a quantum dot, which corresponds to
the opposite limit and involves an energy-dependent transmis-
sion. Therefore the setup considered here is more closely related
to the studies in [58] and [64] in which, however, a disordered

quantum dot and no spin-active scattering was assumed,
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whereas here we treat the ballistic case with spin-active scat-
tering. Disorder for the case of tunnel contacts was considered
by using the Keldysh—Usadel formalism in [65], [66] and [67].
Additionally we want to point out that the description of spin-
active scattering used here and in [63] and [29] is different: In
the previous works the spin-mixing angle is introduced as a
phenomenological parameter, whereas we use a second
tunneling transparency to account for spin flips. For a compari-
son of both descriptions of tunnel contacts we refer the reader to
[68].

Spin-flipped crossed Andreev reflection

In simple superconductor-ferromagnet tunneling junctions the
presence of spin-active scattering gives rise to a new type of
AR. In ordinary AR an electron is retroreflected as a hole with
opposite spin since Cooper pairs represent spin singlets.
However, due to the spin-active nature of tunneling in the setup
considered here, the hole or the electron spin can be flipped.
This spin-flipped Andreev reflection (SAR) induces triplet
correlations in the ferromagnet [29]. To see whether similar
effects occur in our setup we calculate the zero-bias conduc-
tance analogously to Equation 1 for the case of P = P, =1,

meaning maximal parallel polarization

16¢°

2
4r2T 3y (475 -1
Gscar =—,

2
[ré ~813r%e +16T 3, (412 +T, )}

g =npoy (yfl + y?z) and ', = nposyé =T again refer to the
tunnel rates for ordinary single electron tunneling. ['gp =
TPosYs1Ys2 describes the additional spin-flip tunneling rate at the
interface. Obviously, spin-active scattering has lifted the current
blocking indicated in Figure 1 for a s-wave superconductor
connected to two maximally parallelly polarized ferromagnets.
Therefore this finite conductance is similar to the one obtained
for a p-wave superconductor junction in Equation 1. This indi-
cates that this conductance for voltages below the gap is indeed
associated with a spin-flipped crossed Andreev reflection
(SCAR) in which a triplet pair is transferred to the ferromag-
nets.

Of course one may also obtain this information from the CGF
itself. However, the expression is complicated and the proba-
bility distribution of charge transfer is also not easy to access in
an experiment [69,70]. Therefore we follow [3] and use the
cross correlation as an indication to probe whether the two
charges of a Cooper pair transferred in a SCAR process are
indeed transferred to the ferromagnets at the same time. The

presence of nonzero Ggcar at voltages below the gap and 7= 0
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Figure 2: Cross correlation of currents for different parameters: The cross correlation P1’2 according to Equation 13 is calculated for two different sets
of parameters. The polarization of the ferromagnets is assumed to be equal in both cases. The left graph shows the result for P = 0.3, ' = 4A,
FsFp=0,TF1 =0.4A, T =0.1Aand T=0.1A. The right graph is for P=1, g =2A,se=A, ['F1 = 0.05A =T and T =0.1A. A distortion of the super-
conducting DOS described by a Dynes parameter [72] of 'p = 0.005A has been introduced in order to circumvent numerical artifacts of the diverging
superconductor DOS. The cross correlations are positive in the deep-red regions.

in combination with a positive cross correlation can only be
explained by a simultaneous transfer of a triplet pair to the
ferromagnets, which implies that we indeed observe p-wave
splitting. The cross correlation can be calculated as a mixed
second derivative of the CGF

I 162 lnXSFF(X,r)|
T OO,

A= (13)

‘X—)O

In Figure 2 the result of Equation 13 is shown for two different
configurations of the couplings and polarizations. For moderate
polarization (P = 0.3) and no spin-active scattering, we find two
cases in which positive cross correlation can be observed, in
accordance with previous results [27,71]. First, for voltages
close to the superconducting gap and V; =~ —V,, CAR is strongly
suppressed and one expects single-electron transmission to be
dominant. Nonetheless, the energy-dependent DOS of the
superconductor leads to large transmission coefficients for
double AR from one ferromagnet to the superconductor and
further to the second ferromagnet. This process is known as
Andreev reflection enhanced transmission (AET) [27]. The
second case of positive cross correlation can be observed for
one bias voltage being close to zero and a finite bias on the
second electrode. In this case, CAR dominates over single-elec-

tron transmission and induces positive cross correlation [27].

This picture changes dramatically if we go over to the case of
full polarization (P = 1) and finite spin-active scattering. Since
AET relies on double AR, and consequently the spin symmetry
of AR, it must disappear since SAR violates spin-symmetry and

it would be the only possible charge-transfer process for a
single lead for P = 1. However, for V| = V, a positive cross
correlation remains. This is exactly the position where we
assume SCAR to be dominant since V| = V, means that single-
electron transfer between the ferromagnets does not occur. The
effect is, of course, still observable for P < 1 but the polariz-
ation should be rather strong. Spin-active scattering in super-
conductor—ferromagnet hybrids is a general phenomenon [32]
and full polarization was just assumed for clarity. Therefore, we
believe that SCAR is a generic phenomenon that should also be
present in superconductor—ferromagnet beam splitters with
tunnel contacts [6,63] or chaotic cavities [58,64], since its origin
does not lie in the precise form of the energy dependence of the

transmission coefficients.

Experiments in the direction of the above-described proposal
have already been realized [73]. Multiterminal hybrid systems
with embedded quantum dots [74] also based on InAs
nanowires [26,75] have already been realized experimentally. In
such devices a new subgap structure has been observed, which
can be explained by SAR [68]. This is of special importance,
since in our consideration we did not include the effects of
Coulomb interaction on the dot, and thus we should worry
about a possible suppression of SCAR. The mean-field analysis
of [68], however, revealed that SAR and therefore also SCAR
should be observable also in the presence of strong Coulomb
interaction. Apart from that, we can argue that also in inter-
acting systems characteristic resonances, such as that of the
resonant level considered here, are present and have a character-
istic location and width associated with interactions. Therefore
the general scenario should be robust. However, one should

bear in mind that for more extended quantum dots or nanowires
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disorder could play an important role as mentioned in [65] and
[66]. Another experiment realized a superconductor—ferro-
magnet—superconductor junction based on Al and Co elec-
trodes with two closely spaced cobalt wires bridging two
aluminum electrodes [76]. In this experiment the resistance in
the case of antiparallel and parallel magnetization of the two
wires was measured, and for low temperatures it was found that
the antiparallel arrangement may even have higher resistance
than the parallel one, giving reliable evidence for spin-active
scattering being present in the device. Concerning a possible
experimental realization using quantum dots one should
consider that the interaction should be small enough and the
polarization large enough so as not to completely suppress
SCAR, and the coupling to the leads should be of the order of
the superconductor gap I', I's, I'sz = A. Nowadays, this coupling
is generally obtained in experiments using InAs nanowires or

carbon nanotubes as quantum dots [77].

Conclusion

To conclude, we considered superconductor—ferromagnet beam
splitters without a specific consideration of interface properties.
We found that splitting of spin-polarized p-wave Cooper pairs
can easily be identified in the conductance. However, p-wave
superconductors that are usable in experiments are not avail-
able, thus we proposed a scheme to mimic their behavior by
taking into account the spin activity of superconductor—ferro-
magnet interfaces. The newly identified SCAR process allows
one to obtain split p-wave Cooper pairs, which gives access to
the Bell states other than “I’7>

Acknowledgements

The authors would like to thank A. Levy Yeyati, L. Hofstetter
and S. Maier for many interesting discussions. The financial
support was provided by the DFG under grant No. KO-2235/3,
and “Enable fund” of the University of Heidelberg.

References

1. Recher, P.; Sukhorukov, E. V.; Loss, D. Phys. Rev. B 2001, 63,
165314. doi:10.1103/PhysRevB.63.165314

2. Recher, P.; Loss, D. Phys. Rev. B 2002, 65, 165327.
doi:10.1103/PhysRevB.65.165327

3. Borlin, J.; Belzig, W.; Bruder, C. Phys. Rev. Lett. 2002, 88, 197001.
doi:10.1103/PhysRevLett.88.197001

4. Byers, J. M,; Flatté, M. E. Phys. Rev. Lett. 1995, 74, 306-309.
doi:10.1103/PhysRevLett.74.306

5. Deutscher, G.; Feinberg, D. Appl. Phys. Lett. 2000, 76, 487—489.
doi:10.1063/1.125796

6. Torres, J.; Martin, T. Eur. Phys. J. B1999, 12, 319-322.
doi:10.1007/s100510051010

7. Mélin, R.; Benjamin, C.; Martin, T. Phys. Rev. B 2008, 77, 094512.
doi:10.1103/PhysRevB.77.094512

8. Chtchelkatchev, N. M.; Blatter, G.; Lesovik, G. B.; Martin, T.
Phys. Rev. B 2002, 66, 161320. doi:10.1103/PhysRevB.66.161320

Beilstein J. Nanotechnol. 2012, 3, 493-500.

9. Sidorenko, A. Fundamentals of Superconducting Nanoelectronics;
Springer: Berlin Heidelberg, 2011.

10. Morten, J. P.; Huertas-Hernando, D.; Belzig, W.; Brataas, A. EPL 2008,

81, 40002. doi:10.1209/0295-5075/81/40002

.Beckmann, D.; Weber, H. B.; v. Lohneysen, H. Phys. Rev. Lett. 2004,

93, 197003. doi:10.1103/PhysRevLett.93.197003

12.Beckmann, D.; v. Léhneysen, H. Appl. Phys. A 2007, 89, 603-607.
doi:10.1007/s00339-007-4193-4

13.Chevallier, D.; Rech, J.; Jonckheere, T.; Martin, T. Phys. Rev. B 2011,
83, 125421. doi:10.1103/PhysRevB.83.125421

14.Levy Yeyati, A.; Bergeret, F. S.; Martin-Rodero, A.; Klapwijk, T. M.
Nature Physics 2007, 3, 455—459. doi:10.1038/nphys621

15.Bignon, G.; Houzet, M.; Pistolesi, F.; Hekking, F. W. J. Europhys. Lett.
2004, 67, 110. doi:10.1209/epl/i2003-10293-9

16.Lesovik, G. B.; Martin, T.; Blatter, G. Eur. Phys. J. B 2001, 24,
287-290. doi:10.1007/s10051-001-8675-4

17.Russo, S.; Kroug, M.; Klapwijk, T. M.; Morpurgo, A. F. Phys. Rev. Lett.
2005, 95, 027002. doi:10.1103/PhysRevLett.95.027002

18. Futterer, D.; Governale, M.; Pala, M. G.; Konig, J. Phys. Rev. B 2009,
79, 054505. doi:10.1103/PhysRevB.79.054505

19. Golubev, D. S.; Zaikin, A. D. EPL 2009, 86, 37009.
doi:10.1209/0295-5075/86/37009

20.Herrmann, L. G.; Portier, F.; Roche, P.; Levy Yeyati, A.; Kontos, T,;

Strunk, C. Phys. Rev. Lett. 2010, 104, 026801.

doi:10.1103/PhysRevLett.104.026801

.Hofstetter, L.; Csonka, S.; Nygard, J.; Schénenberger, C. Nature 2009,

461, 960-963. doi:10.1038/nature08432

22.8Schindele, J.; Baumgartner, A.; Schonenberger, C. Near-unity Cooper
pair splitting efficiency. 2012, arXiv:1204.5777 [cond-mat.mes-hall].
http://arxiv.org/abs/1204.5777v1.

23.Wei, J.; Chandrasekhar, V. Nat. Phys. 2010, 6, 494.
doi:10.1038/nphys1669

24.Einstein, A.; Podolsky, B.; Rosen, N. Phys. Rev. 1935, 47, 777-780.
doi:10.1103/PhysRev.47.777

25.Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.;
Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G.
Rev. Mod. Phys. 2009, 81, 1727-1751.
doi:10.1103/RevModPhys.81.1727

26. Hofstetter, L.; Csonka, S.; Baumgartner, A.; Filop, G.; d’'Hollosy, S.;
Nygard, J.; Schonenberger, C. Phys. Rev. Lett. 2011, 107, 136801.
doi:10.1103/PhysRevLett.107.136801

27.Soller, H.; Komnik, A. Eur. Phys. J. D 2011, 63, 3-8.
doi:10.1140/epjd/e2010-00256-7

28.Morten, J. P.; Huertas-Hernando, D.; Belzig, W.; Brataas, A.
Phys. Rev. B 2008, 78, 224515. doi:10.1103/PhysRevB.78.224515

29. Grein, R.; Léfwander, T.; Metalidis, G.; Eschrig, M. Phys. Rev. B 2010,
81, 094508. doi:10.1103/PhysRevB.81.094508

30. Cottet, A.; Dougot, B.; Belzig, W. Phys. Rev. Lett. 2008, 101, 257001.
doi:10.1103/PhysRevLett.101.257001

31.Cottet, A.; Belzig, W. Phys. Rev. B 2008, 77, 064517.
doi:10.1103/PhysRevB.77.064517

32.Hubler, F.; Wolf, M. J.; Beckmann, D.; v. L6hneysen, H. Observation of
Andreev bound states at spin-active interfaces. 2010, arXiv:1012.3867
[cond-mat.mes-hall]. http://arxiv.org/abs/1012.3867.

33.Piano, S.; Grein, R.; Mellor, C. J.; Vyborny, K.; Campion, R.; Wang, M.;
Eschrig, M.; Gallagher, B. L. Phys. Rev. B 2011, 83, 081305.
doi:10.1103/PhysRevB.83.081305

34.Beenakker, C. W. J. Phys. Rev. B 1992, 46, 12841-12844.
doi:10.1103/PhysRevB.46.12841

1

-

2

=

499


http://dx.doi.org/10.1103%2FPhysRevB.63.165314
http://dx.doi.org/10.1103%2FPhysRevB.65.165327
http://dx.doi.org/10.1103%2FPhysRevLett.88.197001
http://dx.doi.org/10.1103%2FPhysRevLett.74.306
http://dx.doi.org/10.1063%2F1.125796
http://dx.doi.org/10.1007%2Fs100510051010
http://dx.doi.org/10.1103%2FPhysRevB.77.094512
http://dx.doi.org/10.1103%2FPhysRevB.66.161320
http://dx.doi.org/10.1209%2F0295-5075%2F81%2F40002
http://dx.doi.org/10.1103%2FPhysRevLett.93.197003
http://dx.doi.org/10.1007%2Fs00339-007-4193-4
http://dx.doi.org/10.1103%2FPhysRevB.83.125421
http://dx.doi.org/10.1038%2Fnphys621
http://dx.doi.org/10.1209%2Fepl%2Fi2003-10293-9
http://dx.doi.org/10.1007%2Fs10051-001-8675-4
http://dx.doi.org/10.1103%2FPhysRevLett.95.027002
http://dx.doi.org/10.1103%2FPhysRevB.79.054505
http://dx.doi.org/10.1209%2F0295-5075%2F86%2F37009
http://dx.doi.org/10.1103%2FPhysRevLett.104.026801
http://dx.doi.org/10.1038%2Fnature08432
http://arxiv.org/abs/1204.5777v1
http://dx.doi.org/10.1038%2Fnphys1669
http://dx.doi.org/10.1103%2FPhysRev.47.777
http://dx.doi.org/10.1103%2FRevModPhys.81.1727
http://dx.doi.org/10.1103%2FPhysRevLett.107.136801
http://dx.doi.org/10.1140%2Fepjd%2Fe2010-00256-7
http://dx.doi.org/10.1103%2FPhysRevB.78.224515
http://dx.doi.org/10.1103%2FPhysRevB.81.094508
http://dx.doi.org/10.1103%2FPhysRevLett.101.257001
http://dx.doi.org/10.1103%2FPhysRevB.77.064517
http://arxiv.org/abs/1012.3867
http://dx.doi.org/10.1103%2FPhysRevB.83.081305
http://dx.doi.org/10.1103%2FPhysRevB.46.12841

35.Loéfwander, T.; Grein, R.; Eschrig, M. Phys. Rev. Lett. 2010, 105,
207001. doi:10.1103/PhysRevLett.105.207001

36. Murakawa, H.; Ishida, K.; Kitagawa, K.; Mao, Z. Q.; Maeno, Y.
Phys. Rev. Lett. 2004, 93, 167004.
doi:10.1103/PhysRevLett.93.167004

37.Cottet, A.; Huertas-Hernando, D.; Belzig, W.; Nazarov, Y. V.
Phys. Rev. B 2009, 80, 184511. doi:10.1103/PhysRevB.80.184511

38.Nazarov, Y. V. Ann. Phys. 1999, 8, 193.

39.Levitov, L. S.; Lee, H.; Lesovik, G. B. J. Math. Phys. 1996, 37, 4845.
doi:10.1063/1.531672

40. Gogolin, A. O.; Komnik, A. Phys. Rev. B 2006, 73, 195301.

doi:10.1103/PhysRevB.73.195301

.Haupt, F.; Novotny, T.; Belzig, W. Phys. Rev. Lett. 2009, 103, 136601.

doi:10.1103/PhysRevLett.103.136601

42. Avriller, R.; Levy Yeyati, A. Phys. Rev. B 2009, 80, 041309.
doi:10.1103/PhysRevB.80.041309

43.Mélin, R. Eur. Phys. J. B 2004, 39, 249-260.
doi:10.1140/epjb/e2004-00188-7

44. Muzykantskii, B. A.; Khmelnitskii, D. E. Phys. Rev. B 1994, 50,
3982-3987. doi:10.1103/PhysRevB.50.3982

45.Cohen, M. H,; Falicov, L. M.; Phillips, J. C. Phys. Rev. Lett. 1962, 8,
316-318. doi:10.1103/PhysRevLett.8.316

46.Cuevas, J. C.; Martin-Rodero, A.; Levy Yeyati, A. Phys. Rev. B 1996,
54, 7366—7379. doi:10.1103/PhysRevB.54.7366

47.Grein, R.; Eschrig, M.; Metalidis, G.; Schon, G. Phys. Rev. Lett. 2009,
102, 227005. doi:10.1103/PhysRevLett.102.227005

48. Linder, J.; Cuoco, M.; Sudbg, A. Phys. Rev. B 2010, 81, 174526.
doi:10.1103/PhysRevB.81.174526

49. Duckheim, M.; Brouwer, P. W. Phys. Rev. B 2011, 83, 054513.
doi:10.1103/PhysRevB.83.054513

50.Zhang, P.; Xue, Q.-K.; Wang, Y.; Xie, X. C. Phys. Rev. Lett. 2002, 89,

286803. doi:10.1103/PhysRevLett.89.286803

.Lépez, R.; Sanchez, D. Phys. Rev. Lett. 2003, 90, 116602.

doi:10.1103/PhysRevLett.90.116602

52.Yamada, Y.; Tanaka, Y.; Kawakami, N. Physica E 2007, 40, 265—-268.
doi:10.1016/j.physe.2007.06.010

53.Maier, S.; Schmidt, T. L.; Komnik, A. Phys. Rev. B 2011, 83, 085401.
doi:10.1103/PhysRevB.83.085401

54.Urban, D. F.; Avriller, R.; Levy Yeyati, A. Phys. Rev. B 2010, 82,
121414. doi:10.1103/PhysRevB.82.121414

55.Haupt, F.; Novotny, T.; Belzig, W. Phys. Rev. B 2010, 82, 165441.
doi:10.1103/PhysRevB.82.165441

56. Levitov, L. S.; Reznikov, M. Phys. Rev. B 2004, 70, 115305.
doi:10.1103/PhysRevB.70.115305

57.Hamann, D. R. Phys. Rev. Lett. 1971, 26, 1030—1032.
doi:10.1103/PhysRevLett.26.1030

58. Golubev, D. S.; Zaikin, A. D. Phys. Rev. B 2007, 76, 184510.
doi:10.1103/PhysRevB.76.184510

59.Linder, J.; Yokoyama, T.; Sudbg, A.; Eschrig, M. Phys. Rev. Lett. 2009,
102, 107008. doi:10.1103/PhysRevLett.102.107008

60. Jonckheere, T.; Zazunov, A.; Bayandin, K. V.; Shumeiko, V.; Martin, T.

Phys. Rev. B 2009, 80, 184510. doi:10.1103/PhysRevB.80.184510

.Belzig, W.; Wilhelm, F. K.; Bruder, C.; Schén, G.; Zaikin, A. D.

Superlattices Microstruct. 1999, 25, 1251-1288.

doi:10.1006/spmi.1999.0710

62.Kalenkov, M. S.; Zaikin, A. D. Phys. Rev. B 2007, 75, 172503.
doi:10.1103/PhysRevB.75.172503

63. Kalenkov, M. S.; Zaikin, A. D. Phys. Rev. B 2007, 76, 224506.
doi:10.1103/PhysRevB.76.224506

4

RN

5

iy

6

=

Beilstein J. Nanotechnol. 2012, 3, 493-500.

64.Morten, J. P.; Brataas, A.; Belzig, W. Phys. Rev. B 2006, 74, 214510.
doi:10.1103/PhysRevB.74.214510

65. Brinkman, A.; Golubov, A. A. Phys. Rev. B 2006, 74, 214512.
doi:10.1103/PhysRevB.74.214512

66. Golubev, D. S.; Kalenkov, M. S.; Zaikin, A. D. Phys. Rev. Lett. 2009,
103, 067006. doi:10.1103/PhysRevLett.103.067006

67.Kalenkov, M. S.; Zaikin, A. D. Phys. Rev. B 2010, 82, 024522.
doi:10.1103/PhysRevB.82.024522

68. Soller, H.; Hofstetter, L.; Csonka, S.; Levy Yeyati, A.;
Schoénenberger, C.; Komnik, A. Phys. Rev. B 2012, 85, 1745212.
doi:10.1103/PhysRevB.85.174512

69. Gustavsson, S.; Leturcq, R.; Ihn, T.; Ensslin, K.; Reinwald, M.;
Wegscheider, W. Phys. Rev. B 2007, 75, 075314.
doi:10.1103/PhysRevB.75.075314

70.Reulet, B.; Senzier, J.; Prober, D. E. Phys. Rev. Lett. 2003, 91,
196601. doi:10.1103/PhysRevLett.91.196601

71.Freyn, A.; Fiéser, M.; Mélin, R. Phys. Rev. B 2010, 82, 014510.
doi:10.1103/PhysRevB.82.014510

72.Dynes, R. C.; Narayanamurti, V.; Garno, J. P. Phys. Rev. Lett. 1978,
41, 1509-1512. doi:10.1103/PhysRevLett.41.1509

73.Brauer, J.; Hubler, F.; Smetanin, M.; Beckmann, D.; v. L6hneysen, H.
Phys. Rev. B 2010, 81, 024515. doi:10.1103/PhysRevB.81.024515

74.Leturcq, R.; Schmid, L.; Ensslin, K.; Meir, Y.; Driscoll, D. C,;
Gossard, A. C. Phys. Rev. Lett. 2005, 95, 126603.
doi:10.1103/PhysRevLett.95.126603

75. Hofstetter, L.; Geresdi, A.; Aagesen, M.; Nygard, J.;
Schoénenberger, C.; Csonka, S. Phys. Rev. Lett. 2010, 104, 246804.
doi:10.1103/PhysRevLett.104.246804

76.Colci, M.; Sun, K.; Shah, N.; Vishveshwara, S.; Van Harlingen, D. J.
Phys. Rev. B 2012, 85, 180512. doi:10.1103/PhysRevB.85.180512

77.de Franchesci, S.; Kouwenhoven, L.; Schénenberger, C.;
Wernsdorfer, W. Nat. Nanotech. 2010, 5, 703-711.
doi:10.1038/nnano.2010.173

License and Terms

This is an Open Access article under the terms of the
Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which

permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of
Nanotechnology terms and conditions:
(http://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one
which can be found at:
doi:10.3762/bjnano.3.56

500


http://dx.doi.org/10.1103%2FPhysRevLett.105.207001
http://dx.doi.org/10.1103%2FPhysRevLett.93.167004
http://dx.doi.org/10.1103%2FPhysRevB.80.184511
http://dx.doi.org/10.1063%2F1.531672
http://dx.doi.org/10.1103%2FPhysRevB.73.195301
http://dx.doi.org/10.1103%2FPhysRevLett.103.136601
http://dx.doi.org/10.1103%2FPhysRevB.80.041309
http://dx.doi.org/10.1140%2Fepjb%2Fe2004-00188-7
http://dx.doi.org/10.1103%2FPhysRevB.50.3982
http://dx.doi.org/10.1103%2FPhysRevLett.8.316
http://dx.doi.org/10.1103%2FPhysRevB.54.7366
http://dx.doi.org/10.1103%2FPhysRevLett.102.227005
http://dx.doi.org/10.1103%2FPhysRevB.81.174526
http://dx.doi.org/10.1103%2FPhysRevB.83.054513
http://dx.doi.org/10.1103%2FPhysRevLett.89.286803
http://dx.doi.org/10.1103%2FPhysRevLett.90.116602
http://dx.doi.org/10.1016%2Fj.physe.2007.06.010
http://dx.doi.org/10.1103%2FPhysRevB.83.085401
http://dx.doi.org/10.1103%2FPhysRevB.82.121414
http://dx.doi.org/10.1103%2FPhysRevB.82.165441
http://dx.doi.org/10.1103%2FPhysRevB.70.115305
http://dx.doi.org/10.1103%2FPhysRevLett.26.1030
http://dx.doi.org/10.1103%2FPhysRevB.76.184510
http://dx.doi.org/10.1103%2FPhysRevLett.102.107008
http://dx.doi.org/10.1103%2FPhysRevB.80.184510
http://dx.doi.org/10.1006%2Fspmi.1999.0710
http://dx.doi.org/10.1103%2FPhysRevB.75.172503
http://dx.doi.org/10.1103%2FPhysRevB.76.224506
http://dx.doi.org/10.1103%2FPhysRevB.74.214510
http://dx.doi.org/10.1103%2FPhysRevB.74.214512
http://dx.doi.org/10.1103%2FPhysRevLett.103.067006
http://dx.doi.org/10.1103%2FPhysRevB.82.024522
http://dx.doi.org/10.1103%2FPhysRevB.85.174512
http://dx.doi.org/10.1103%2FPhysRevB.75.075314
http://dx.doi.org/10.1103%2FPhysRevLett.91.196601
http://dx.doi.org/10.1103%2FPhysRevB.82.014510
http://dx.doi.org/10.1103%2FPhysRevLett.41.1509
http://dx.doi.org/10.1103%2FPhysRevB.81.024515
http://dx.doi.org/10.1103%2FPhysRevLett.95.126603
http://dx.doi.org/10.1103%2FPhysRevLett.104.246804
http://dx.doi.org/10.1103%2FPhysRevB.85.180512
http://dx.doi.org/10.1038%2Fnnano.2010.173
http://creativecommons.org/licenses/by/2.0
http://www.beilstein-journals.org/bjnano
http://dx.doi.org/10.3762%2Fbjnano.3.56

	Abstract
	Introduction
	Results and Discussion
	Superconductor–ferromagnet beam splitters
	Cumulant-generating function with spin-active scattering
	Spin-flipped crossed Andreev reflection

	Conclusion
	Acknowledgements
	References

