Supporting Information

for

Influence of particle size and fluorination ratio of CF_x precursor compounds on the electrochemical performance of C–FeF₂ nanocomposites for reversible lithium storage

Ben Breitung^{*1}, M. Anji Reddy¹, Venkata Sai Kiran Chakravadhanula^{1,2}, Michael Engel¹, Christian Kübel^{1,2,3}, Annie K. Powell^{1,4}, Horst Hahn^{1,2} and Maximilian Fichtner^{*1,2}

Address: ¹Karlsruhe Insititute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; ²Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89081 Ulm, Germany; ³Karlsruhe Insititute of Technology (KIT), Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and ⁴Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, D-76128 Karlsruhe, Germany

E-Mail: Ben Breitung* - ben.breitung@kit.edu;

Maximilian Fichtner* - maximilian.fichtner@kit.edu

*Corresponding author

Detailed experimental data

The L3/L2 intensity ratios of the different composites have been studied and showed decreasing ratios with increasing carbon content. These ratios lie in the range of the values of where FeF₂, as predicted in the work of Cosandey et al. [1]. Further, an increasing carbon content leads to an increasing amount of iron carbides with iron in low valence compounds, which leads to a lower L3/L2 ratio. The XRD data, which do not show any hints of the rhombohedral crystal structure of iron(III) fluoride, is in a good agreement with the TEM data that show the rutile structure of FeF₂.

Figure S1: L3 peak energy positions and L3/L2 intensity ratios of the different compounds.

Table S1: Experimental data displayed in Figure S1.

C(FeF ₂) _{0.25} _300					
	Area	FWHM	Height	Ratio	Peak Position
Fe(L3)	4.079	3.632	0.429	2.95	707.2
Fe(L2)	1.560	4.432	0.145		719.7

C(FeF ₂) _{0.35} _300					
	Area	FWHM	Height	Ratio	Peak Position
Fe(L3)	3.352	2.890	0.428	4.32	706.8
Fe(L2)	0.799	3.371	0.099		718.8

C(FeF ₂) _{0.5} _300					
	Area	FWHM	Height	Ratio	Peak Position
Fe(L3)	3.385	2.985	0.432	4.45	706.5
Fe(L2)	0.854	3.495	0.097		718.7

References

 Cosandey, F.; Al-Sharab, J. F.; Badway, F.; Amatucci, G. G.; Stadelmann, P. Microscopy and Microanalysis, 2007, 13, 87–95.