Supporting Information File 1

for

Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor

Anna Pohl^{1,2} and Ingrid M. Weiss*,1

Address: ¹INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany and ²Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

Email: Ingrid M. Weiss - ingrid.weiss@inm-gmbh.de

*Corresponding author

Experimental Details

Order	Running	Injustion colution	Concen-	Volumo	Elow roto	Channel				Time between	
Order	buffer	injection solution	tration	volume	FIOW Tale	1	2	3	4	injections	
1.	H ₂ O	CaCO ₃ in H ₂ O	17.5 µmol/L	400 µL	40 µL/min	х				5 minutes	
2.	H ₂ O	CaCO ₃ in H ₂ O	35 µmol/L	400 µL	40 µL/min	х				5 minutes	
3.	H ₂ O	CaCO ₃ in H ₂ O	70 µmol/L	400 µL	40 µL/min	х				5 minutes	
4.	H ₂ O	$CaCO_3$ in H_2O	105 µmol/L	400 µL	40 µL/min	х				5 minutes	
5.	H ₂ O	CaCO₃ in H₂O	140 µmol/L	400 µL	40 µL/min	x				5 minutes	

Table S1: Sequence of injections on channel 1. Calcium carbonate interaction with COO-chip.

Table S2: Calcium carbonate interaction with COO-SAM sensor chip at different flow rates. All injections

Order	Running	Injection solution	Concen-	Volumo	Elow rato	Channel				Time between	
	buffer		tration	volume	FIOWTALE	1	2	3	4	injections	
1.	H ₂ O	$CaCO_3$ in H_2O	140 μmol/L	400 µL	200 µL/min	Х	x			5 minutes	
2.	H ₂ O	CaCO ₃ in H ₂ O	140 µmol/L	400 µL	100 µL/min	х				5 minutes	
3.	H ₂ O	$CaCO_3$ in H_2O	140 µmol/L	400 µL	50 µL/min	Х				5 minutes	
4.	H ₂ O	CaCO ₃ in H ₂ O	140 µmol/L	400 µL	25 µL/min	Х				5 minutes	
5.	H ₂ O	CaCO ₃ in H ₂ O	140 µmol/L	400 µL	12.5 µL/min	х				5 minutes	

were performed with 140 $\mu \text{mol/L}$ calcium carbonate in pure water.

Table S3: The running buffer was a 140 µmol/L solution of calcium carbonate in pure water. Different volumes of citric acid (1 mM) were injected as well as pure water. All experiments were performed on the same channel of the biosensor.

Ordor	Bupping buffor	Injection	Concen	Volumo	Flow roto	Channel				Time
Order	Running buner	solution	tration	volume	FIOW Tale	1	2	3	4	injections
1	$CaCO_3$ in H_2O	Citric acid	1 mM	100 μL 50 μL/min		х				5 minutes
2	CaCO ₃ in H ₂ O	Citric acid	1 mM	200 µL	50 µL/min	х				5 minutes
3	CaCO ₃ in H ₂ O	Citric acid	1 mM	400 µL	50 µL/min	х				5 minutes
4	$CaCO_3$ in H_2O	Pure water	-	100 μL 50 μL/min		х				5 minutes
5	CaCO ₃ in H ₂ O	Pure water	-	200 µL	50 µL/min	х				5 minutes
6	CaCO ₃ in H ₂ O	Pure water	-	400 µL	50 µL/min	х				5 minutes

Table S4: Experiment with peptides ES9 and AS8 in Gly-Gly buffer at different pH-values. Exactly the same order was maintained for all experiments performed in Gly-Gly pH 7.75 (channel 2), Gly-Gly pH 8.2 (channel 1) or, Gly-Gly 9.0 (channel 3). Peptide solutions with c(ES9) or c(AS8) = 200 μ M in 20 mM Gly-Gly were used. c, concentration; V, injection volume; Δt , time interval between injections, for which the microfluidic system was allowed to equilibrate using a Gly-Gly running buffer of the respective pH.

Ordor	Running	unning Injection	С	V ful 1	Flow rate		Δt			
Order	buffer	solution	[mM]	[mM] [µL/		1	2	3	4	[min]
1	Gly-Gly	EDTA	10	200	40	pH 8.2	pH 7.75	pH 9.0		5
2	Gly-Gly	Gly-Gly	20	200	40	pH 8.2	pH 7.75	рН 9.0		2
3	Gly-Gly	EDTA	10	200	40	pH 8.2	pH 7.75	рН 9.0		5
4	Gly-Gly	ES9	0.2	200	40	pH 8.2	pH 7.75	рН 9.0		2
5	Gly-Gly	EDTA	10	200	40	pH 8.2	pH 7.75	рН 9.0		5
6	Gly-Gly	AS8	0.2	200	40	pH 8.2	pH 7.75	pH 9.0		2