Supporting Information File 2

for

Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-
\section*{SAM using a microfluidic SAW biosensor}
Anna Pohl ${ }^{1,2}$ and Ingrid M. Weiss ${ }^{*, 1}$
Address: ${ }^{1}$ INM - Leibniz Institute for New Materials, Campus D2 2, 66123
Saarbrücken, Germany and ${ }^{2}$ Saarland University, Campus D2 2, 66123
Saarbrücken, Germany

Email: Ingrid M. Weiss - ingrid.weiss@inm-gmbh.de
*Corresponding author

Phase signal calculation using glycerol as reference

Phase signal derived "normalized mass" calculation experiment by using glycerol injection for compensating solvent viscosity effects. A portion of 5% aqueous glycerol was injected after the equilibration of the system with the running buffer, in this case $140 \mu \mathrm{~mol} / \mathrm{L}$ calcium carbonate. Supplementary Figure 1A chronologically shows four citric acid injections, followed by glycerol injection at $\mathrm{tg}=4437 \mathrm{~s}$. The phase and the amplitude signal represent the originally recorded data. The calculated overlay of the four citric acid injections (Suppl Fig. 1A, t1 = $2021 \mathrm{~s} ; \mathrm{t} 2=2360 \mathrm{~s} ; \mathrm{t} 3=2699 \mathrm{~s} ; \mathrm{t} 4=3038 \mathrm{~s}$) and the glycerol injection (Suppl Fig. 1A, $\mathrm{tg}=4437 \mathrm{~s}$), merged in Suppl. Fig. 1B-E at $\mathrm{t}=0$ is shown. Suppl. Figures 1 B and 1 C show the raw phase and amplitude signal of all injections whereby in Suppl. Figures 1D and 1E the calculated signals are presented.

Figure S1: Experimental determination of the viscosity effect according to the established glycerol method previously described by the manufacturer. A, Phase and amplitude signal for 4 citric acid injections, followed by a 5% glycerol injection. Note that individual signals from the four citric acid injections cannot be distinguished in the overlay image. B-E, Comparison between the original signals (B, C) and calculated mass normalized phase signal (D) and corresponding amplitude signal (E). The latter is identical with the original amplitude signal (C).

