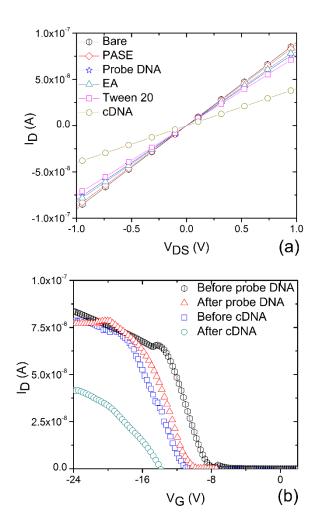
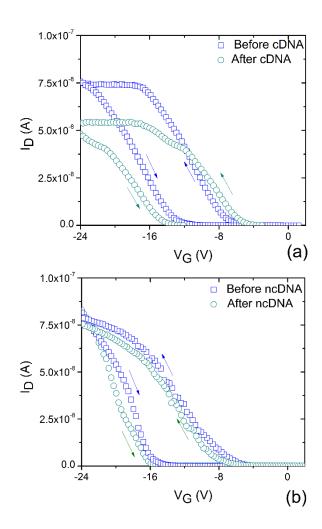
Supporting Information

for

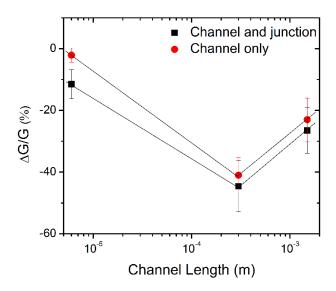
Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization


Hari Krishna Salila Vijayalal Mohan*¹, Jianing An¹, Yani Zhang^{2,3}, Chee How Wong¹ and Lianxi Zheng*^{1,4}

Address: ¹School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, ²Temasek Laboratories, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, ³Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072, Xi'an, PR China, and ⁴Department of Mechanical Engineering, Khalifa University of Science, Technology & Research (KUSTAR), P.O. Box 127788, Abu Dhabi, United Arab Emirates


Email: Hari Krishna Salila Vijayalal Mohan* - hari1@e.ntu.edu.sg; Lianxi Zheng* - Lianxi.zheng@kustar.ac.ae

^{*} Corresponding author


Additional experimental data

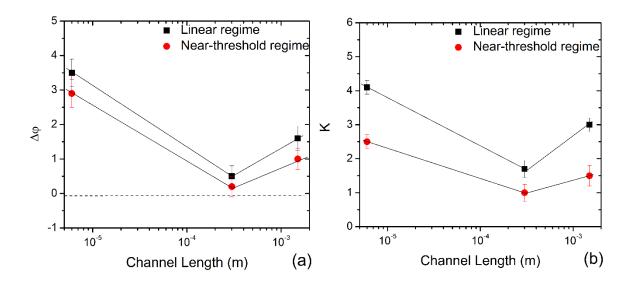

Figure S1: (a) I_D – V_{DS} and (b) I_D – V_G curves of SWCNT-based FETs showing the various functionalization steps with both channel and junction exposed to cDNA ($L = 300 \, \mu m$). The "before probe DNA" and "after probe DNA" I_D – V_G curves represent the PASE functionalization and probe DNA incubation steps, respectively. The "before cDNA" step corresponds to the incubation of probe DNA-immobilized FETs with EA and Tween 20. The "after cDNA" step represents the recording after incubation with cDNA.

Figure S2: I_D – V_G plots of SWCNT-based FETs ($L = 300 \mu m$) with only the channel exposed to (a) cDNA and (b) ncDNA. The "before cDNA" step corresponds to the incubation of probe DNA-immobilized FETs with EA and Tween 20. The "after cDNA" step represents the recording after incubation with cDNA. The arrows indicate the direction of the gate voltage sweep.

Figure S3: The variation in the conductance response for the devices with the channel and junction exposed ($\Delta G_{\rm cn}/G_{\rm on}$) and devices with only the channel exposed ($\Delta G_{\rm ch}/G_{\rm ch}$) to cDNA, both as a function of L. $\Delta G_{\rm ch}/G_{\rm ch} \cong \Delta G_{\rm on}/G_{\rm on}$ for $L=300~\mu m$ and 1500 μm , which indicates the dominance of the change in channel resistance ($\Delta R_{\rm ch}$) after hybridization. $\Delta G_{\rm on}/G_{\rm on} > \Delta G_{\rm ch}/G_{\rm ch}$ for $L=6~\mu m$, which indicates the additional contribution of the change in contact resistance ($\Delta R_{\rm c}$) to $\Delta G_{\rm on}/G_{\rm on}$ after hybridization. The solid lines are a guide to the eye.

Figure S4: The variation in (a) $\Delta \varphi$ and (b) K with L in the linear and near-threshold regimes for the reverse sweep. The solid lines are a guide to the eye.