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1 Effective electrostatic tip–sample forces and force gradients

In Figure 1 of the main text, we showed the effective C′ and C′′ as a function of the tip–sample
distance, calculated for different amplitudes from an analytical approximation of the electrostatic
force. We use the following expressions for the electrostatic force, derived by Hudlet et al. [1],
for the spherical apex and cone

Fapex(z) = −πε0 U2
ts

RR̃
z(z + R̃)

= −πε0R U2
ts

(
1
z
− 1

z + R̃

)
(1)

Fcone(z) = −πε0k2 U2
ts

[
ln

H
z + R̃

− 1 +
R cos2 θ0/ sin θ0

z + R̃

]
, (2)

where k2 = (ln tan θ0/2)−2, R̃ = R(1 − sin θ0), R is the radius of the apex, θ0 is the half opening
angle of the cone, H is the total height of the tip formed by apex and cone, and z is the distance
of the apex to the sample plane. In addition, we consider the contribution of the cantilever as a
plate capacitor (effective area A) with a separation of z + H,
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The forces as given above include only terms following either a power law or logarithmic
dependence on the distance. In these cases, the integrals for the effective force and force gradient
during an oscillation z = d + A(1 + cos ωt), can be solved as follows. For an inverse power law,
Fts(z) = −C(z + h)−n, using eqs. (2) and (3) in the main text, we find
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where the definite integrals are expressed1 in terms of Gauss’ hypergeometric function, 2F1(a, b; c; z).
For large amplitudes, d + h � 2A, the integrals above may be approximated in terms of the
gamma function:2
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An equivalent expression for the force gradient (eq. (11)) is also given by Giessibl [4], and moti-
vates the normalised frequency shift in frequency modulated AFM, γ = kA3/2∆ f / f0. Similarly,
a normalised force would be ∝

√
A.

With the wide range of values for (d+ h)/2A, as required for Figure 1 in the main text, above
approximations do not necessarily hold. For an estimate of the error, see Figure S1. We therefore
evaluate 2F1 numerically for exact results.

For a logarithmic law, Fts(z) = C ln(z + h), we get
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The total electrostatic force is Fel = Fapex + Fcone + Flever. Since Fel = C′ U2
ts/2, the capacitance

gradients C′ and C′′ follow straightforwardly from the expressions of the electrostatic forces and
force gradients, respectively.

2 The frequency modulation limit

With z̃(ω) =
√

2π ∑∞
n=−∞ ẑnδ(ωd + nωm − ω), eq. (4) in the main text can be written as a

recurrence relation:

G−1(ωd + nωm) ẑn = âδn0 +
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1Substitute t = (d + h)y2/2A and use the integral formula [2]
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Equations (6) and (9) are obtained by applying the quadratic transformation formula 15.3.16 in Abramowitz & Stegun
[2]. The latter step returns the argument of 2F1 into the unit circle, such that an evaluation is possible in terms of its
series definition
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Figure S1: Effective force gradient for an inverse power law, Fts = −C(z + h)−n, exact (solid,
eq. (8)) and approximated for large amplitudes (dashed, eq. (11)) for different powers n. kts is
normalised to the corresponding expression at vanishing oscillation amplitudes.

For ωd = ω0, ωm � ω0, Q � 1, and n 6= 0, the above relation simplifies to

ẑn+1 + ẑn−1 = 2n
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ẑn, (16)

which resembles the recurrence relation Jn+1 + Jn−1 = (2n/β) Jn [2] for the Bessel functions
of the first kind, Jn(β = ∆ω̂/ωm). In this limit, the sidebands are the same as in frequency
modulation, and β is the modulation index.

3 A state-space controller for FM-KFM

In the main text, we have shown that the sideband dynamics after lock-in detection can be
modelled as a n-th order critically damped low-pass filter with the transfer function G(s) =
K(1 + τs)−n. In state space, the same system can be written as ẋ◦ = A◦x◦ + B◦u◦ and y = C◦x◦

with the input u◦ = Udc − Ulcpd and the system matrices
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In this formulation, each element of the state vector x◦ describes the input signal after each
filter stage. By rewriting the system to include the surface potential as the hidden state xn+1 =
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Ulcpd, the new system is ẋ = Ax + Bu, y = Cx, with the input u = Udc and the system matrices
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The task of finding the surface potential is therefore reduced to estimating the hidden state,
Ulcpd, from the observation y.

We include measurement noise in the observations y and the uncertainty of the surface po-
tential as white noise sources. Therefore

ẋ = Ax + Bu + v (23)

y = Cx + w, (24)

where v and w are white noise processes with known spectral densities and covariance matrices
V and W, respectively.

An estimate of the state, x̂, is derived from the observations, y, using an observer: It uses the
information about the dynamics of the state, modelled within the matrices A and B, and adds
to it a scaled version of the residual, y − Cx̂:

˙̂x = Ax̂ + Bu + L(y − Cx̂), (25)

where L is the filter gain. That is, knowledge about the system is used to derive a state estimate
from measurements.

The optimum observer minimises the sum of the squared residuals over time. Given that in
our case the system is perturbed by white noise, the optimum observer is the Kalman filter[5]
with

L = PCᵀW−1, (26)

where P is the covariance matrix of the state estimate, which is found from the solution of the
differential Riccati equation[6]

Ṗ = AP + PAᵀ − PCᵀW−1CP + V. (27)

With Ṗ = 0, a steady-state solution can be found, allowing one to derive steady-state transfer
functions and simplified state update equations.
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