Supporting Information

for
 Effects of spin-orbit coupling and many-body correlations in STM-transport through copper phthalocyanine

Benjamin Siegert*, Andrea Donarini and Milena Grifoni
Address: Institut für Theoretische Physik, Universität Regensburg, D-93040, Germany
Email: Benjamin Siegert* - benjamin.siegert@ur.de
* Corresponding author

Transformation from the atomic to the molecular orbital basis

The Hamiltonian of a molecule in Born-Oppenheimer approximation, after dismissing terms which only depend on the positions of the nuclei and are therefore constant, can be written as

$$
\begin{align*}
\hat{\mathrm{H}} & =\sum_{\substack{\alpha \beta \sigma \\
m n}}\left(h_{\alpha m, \beta n}+\Delta V_{\alpha m, \beta n}^{\mathrm{ion}}\right) \hat{\mathrm{d}}_{\alpha m \sigma}^{\dagger} \hat{\mathrm{d}}_{\beta n \sigma} \\
+ & \frac{1}{2} \sum_{\substack{\alpha \beta \gamma \delta \\
m n o p}} \sum_{\sigma \sigma^{\prime}} V_{\alpha \beta \gamma \delta}^{m n o p} \hat{\mathrm{~d}}_{\alpha m \sigma}^{\dagger} \hat{\mathrm{d}}_{\gamma p \sigma^{\prime}}^{\dagger} \hat{\mathrm{d}}_{\delta q \sigma^{\prime}} \hat{\mathrm{d}}_{\beta n \sigma} \tag{1}
\end{align*}
$$

where $\hat{\mathrm{d}}_{\alpha m \sigma}^{\dagger}$ creates an electron in the atomic orbital $|\alpha m \sigma\rangle$ with orbital quantum number m and spin σ centered at atom α. Further we have defined

$$
\begin{equation*}
h_{\alpha m, \beta n}:=\epsilon_{\alpha m} \delta_{\alpha \beta} \delta_{m n}+b_{\alpha m, \beta n} \tag{2}
\end{equation*}
$$

where $\epsilon_{\alpha m}$ is the energy of orbital m on atom α and $b_{\alpha m, \beta n}$ is the hopping integral between orbital m on atom α and orbital n on atom β. All non-hopping terms can be condensed in the crystal field correction

$$
\begin{equation*}
\Delta V_{\alpha m, \beta n}^{\mathrm{ion}}:=\sum_{\gamma}^{\gamma \neq \alpha, \beta}\langle\alpha m \sigma| \hat{\mathrm{V}}_{\gamma}|\beta n \sigma\rangle, \tag{3}
\end{equation*}
$$

where \hat{V}_{γ} is the atomic core potential at \mathbf{r}_{γ}. Equation (3) defines the crystal field correction to the single particle Hamiltonian. Finally, we have the ordinary matrix elements $V_{\alpha \beta \gamma \delta}^{m n o p}$ of the Coulomb interaction.

The $h_{\alpha m, \beta n}$ are elements of a matrix \mathbf{h} which corresponds to the single particle Hamiltonian of the molecule with only onsite energies and hopping terms. After performing a transformation to the molecular orbital basis, in which \mathbf{h} is diagonal, $|i \sigma\rangle=\sum_{\alpha m} c_{i \alpha m}|\alpha m \sigma\rangle$, and using the approximation that the basis $|\alpha m \sigma\rangle$ is orthogonal, the Hamiltonian reads:

$$
\begin{gather*}
\hat{\mathrm{H}}=\sum_{i j \sigma}\left(\epsilon_{i} \delta_{i j}+\Delta V_{i j}^{\mathrm{ion}}\right) \hat{\mathrm{d}}_{i \sigma}^{\dagger} \hat{\mathrm{d}}_{j \sigma} \\
+\frac{1}{2} \sum_{i j k l} \sum_{\sigma \sigma^{\prime}} V_{i j k l} \hat{\mathrm{~d}}_{i \sigma}^{\dagger} \hat{\mathrm{d}}_{k \sigma^{\prime}}^{\dagger} \hat{\mathrm{d}}_{l \sigma^{\prime}} \hat{\mathrm{d}}_{j \sigma}, \tag{4}
\end{gather*}
$$

where $\Delta V_{i j}^{\text {ion }}$ now is

$$
\begin{equation*}
\Delta V_{i j}^{\mathrm{ion}}=\sum_{\substack{\alpha \beta \\ m n}} c_{i \alpha m}^{*} c_{j \beta n} \Delta V_{\alpha m, \beta n}^{\mathrm{ion}} \tag{5}
\end{equation*}
$$

