Supporting Information

for

Effects of spin–orbit coupling and many-body correlations in STM-transport through copper phthalocyanine

Benjamin Siegert*, Andrea Donarini and Milena Grifoni

Address: Institut für Theoretische Physik, Universität Regensburg, D-93040, Germany

Email: Benjamin Siegert* - benjamin.siegert@ur.de

* Corresponding author

Transformation from the atomic to the molecular orbital basis

Transformation from the atomic to the molecular orbital basis

The Hamiltonian of a molecule in Born-Oppenheimer approximation, after dismissing terms which only depend on the positions of the nuclei and are therefore constant, can be written as

$$\hat{\mathbf{H}} = \sum_{\substack{\alpha\beta\sigma\\mn}} \left(h_{\alpha m,\beta n} + \Delta V_{\alpha m,\beta n}^{\text{ion}} \right) \hat{\mathbf{d}}_{\alpha m \sigma}^{\dagger} \hat{\mathbf{d}}_{\beta n \sigma} + \frac{1}{2} \sum_{\substack{\alpha\beta\gamma\delta\\mnop}} \sum_{\sigma\sigma'} V_{\alpha\beta\gamma\delta}^{mnop} \hat{\mathbf{d}}_{\alpha m \sigma}^{\dagger} \hat{\mathbf{d}}_{\gamma p \sigma'}^{\dagger} \hat{\mathbf{d}}_{\delta q \sigma'} \hat{\mathbf{d}}_{\beta n \sigma},$$
(1)

where $\hat{d}^{\dagger}_{\alpha m \sigma}$ creates an electron in the atomic orbital $|\alpha m \sigma\rangle$ with orbital quantum number m and spin σ centered at atom α . Further we have defined

$$h_{\alpha m,\beta n} := \epsilon_{\alpha m} \delta_{\alpha \beta} \delta_{m n} + b_{\alpha m,\beta n}, \qquad (2)$$

where $\epsilon_{\alpha m}$ is the energy of orbital m on atom α and $b_{\alpha m,\beta n}$ is the hopping integral between orbital m on atom α and orbital n on atom β . All non-hopping terms can be condensed in the crystal field correction

$$\Delta V_{\alpha m,\beta n}^{\rm ion} := \sum_{\gamma}^{\gamma \neq \alpha,\beta} \left\langle \alpha m \sigma | \hat{\mathbf{V}}_{\gamma} | \beta n \sigma \right\rangle, \tag{3}$$

where \hat{V}_{γ} is the atomic core potential at \mathbf{r}_{γ} . Equation (3) defines the crystal field correction to the single particle Hamiltonian. Finally, we have the ordinary matrix elements $V^{mnop}_{\alpha\beta\gamma\delta}$ of the Coulomb interaction. The $h_{\alpha m,\beta n}$ are elements of a matrix \mathbf{h} which corresponds to the single

The $h_{\alpha m,\beta n}$ are elements of a matrix **h** which corresponds to the single particle Hamiltonian of the molecule with only onsite energies and hopping terms. After performing a transformation to the molecular orbital basis, in which **h** is diagonal, $|i\sigma\rangle = \sum_{\alpha m} c_{i\alpha m} |\alpha m\sigma\rangle$, and using the approximation that the basis $|\alpha m\sigma\rangle$ is orthogonal, the Hamiltonian reads:

$$\hat{\mathbf{H}} = \sum_{ij\sigma} \left(\epsilon_i \delta_{ij} + \Delta V_{ij}^{\text{ion}} \right) \hat{\mathbf{d}}_{i\sigma}^{\dagger} \hat{\mathbf{d}}_{j\sigma} + \frac{1}{2} \sum_{ijkl} \sum_{\sigma\sigma'} V_{ijkl} \hat{\mathbf{d}}_{i\sigma}^{\dagger} \hat{\mathbf{d}}_{k\sigma'}^{\dagger} \hat{\mathbf{d}}_{l\sigma'} \hat{\mathbf{d}}_{j\sigma},$$
(4)

where $\Delta V_{ij}^{\text{ion}}$ now is

$$\Delta V_{ij}^{\text{ion}} = \sum_{\substack{\alpha \beta \\ mn}} c_{i\alpha m}^* c_{j\beta n} \, \Delta V_{\alpha m,\beta n}^{\text{ion}}.$$
(5)