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Symmetries in the frontier orbitals basis



Symmetries in the frontier orbitals basis

One huge simplification which is possible in the molecular orbital basis is the
reduction of the size of our Hilbert space H, which occurs by retaining few
relevant molecular orbitals only. To this end we split the full molecular basis into
frozen and dynamic orbitals, where Nf of the frozen orbitals are assumed to be
always fully occupied and the remaining Ne set to be always empty. We do not
make any assumption about the occupation of the Nd dynamic states. Whether
these Nd frontier orbitals are full or empty depends on the electrochemical
potential of the molecule, and on whether an exchange of electrons with the
environment is possible.

In the occupation number representation a general state of the Fock space
then looks like

|Ψ〉 ≈ |11 . . . 11〉︸ ︷︷ ︸
2Nf

⊗ |nk↑nk↓ . . . nl↑nl↓〉︸ ︷︷ ︸
2Nd

⊗ |00 . . . 00〉︸ ︷︷ ︸
2Ne

. (1)

In this work we assume the molecule to be neutral under equilibrium conditions,
with 195 valence electrons. Thus, the orbitals we choose to build up the subspace
of dynamic orbitals are orbitals Nrs. 97-100, see Fig. 1 (b) in the main text.
This choice results in the lowest 96 molecular orbitals being doubly filled. Note
that the choice of the LUMO states L± rather than Lzx/yz is convenient due
to the fact that these orbitals acquire a definite phase upon rotations of 90
degrees around the main symmetry axis of the molecule. Specifically, for the
four frontier orbitals S, H and L±, the acquired phases are φS = π, φH = 0
and φL± = ±π2 , respectively. This in turn imposes symmetry constraints on the
Hamiltonian. Consider e.g. the Coulomb interaction

Vijkl =
1

4πε0

∫∫
d3r1 d3r2 ψ

∗
i (r1)ψj(r1)

1

|r1 − r2|
ψ∗k(r2)ψl(r2). (2)

Then, in the frontier orbital basis it holds that:

Vijkl = e−i(φi−φj+φk−φl) Vijkl. (3)

Therefore a given matrix element of the Coulomb interaction Vijkl is different
from zero only if the sum of the corresponding phases adds up to multiples of
2π: φi − φj + φk − φl = 2π · n, n ∈ Z. In Tab. 1 we list all nonvanishing
matrix elements of the Coulomb interaction which are used in this work. For
the crystal field correction ∆V ion

ij it can be shown that:

∆V ion
ij = e−i(φi−φj) ∆V ion

ij (4)

⇒ ∆V ion
ij = ∆V ion

ii δij , (5)

since all phases φi are different; φi 6= φj for i 6= j. Hence ∆V ion
ij is diagonal

in the {S,H,L±} basis. In the following we treat the ∆V ion
ii as free parameters

and include them in the paramteter δi entering Eq. 3 in the main text.

S1



US 11.352 eV Jex
HL = −J̃p

HL+L− 548 meV
UH 1.752 eV Jex

L+L− 258 meV
UL = UL+L− 1.808 eV Jp

L+L− 168 meV

USH 1.777 eV Jex
SL = −J̃p

SL+L− 9 meV
USL 1.993 eV Jex

SH = Jp
SH 2 meV

UHL 1.758 eV

Table 1: Major nonvanishing Coulomb integrals between the SOMO(S), the
HOMO(H), the LUMO+ and the LUMO−. When the LUMOs need to be
distinguished, they are denoted as L+ or L−, otherwise just by L. All values
are calculated numerically using Monte Carlo integration [1] of the real space
orbitals and renormalized by a constant εr = 2.2.
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