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Details on the perturbative treatment of the SOI

In addition to the states introduced in Eq. 14 in the main text, the following
states must be also taken into account when performing second order perturba-
tion theory:

|Lτ ↑, Lτ ↓〉 = d̂
†
Lτ↑d̂

†
Lτ↓ |Ω〉 ,

|Lτσ, Lτ̄σ′〉 = d̂
†
Lτσd̂

†
Lτσ′ |Ω〉 ,

|S ↑, S ↓〉 = d̂
†
S↑d̂
†
S↓ |Ω〉 , (1)

with ELτ↑,Lτ↓ = ELτσ,Lτ̄σ′ = ∆1 and ES↑,S↓ = ∆2. In the basis introduced

in Eqs. 14 in the main text and Eq. (1), V̂SO is blockdiagonal and decom-
poses into six subblocks: two three-dimensional, two two-dimensional, one four-
dimensional and one one-dimensional subblocks.

The four dimensional subblock describes the effects of SOI on the T+
+ and

T−− states. Written in the basis {|T+
+〉,|T−−〉,|L+ ↑, L− ↓〉,|S ↑, S ↓〉}, the Hamil-

tonian reads

H =


−Jex

SL 0 0 0
0 −Jex

SL 0 0
0 0 ∆1 0
0 0 0 ∆2



+


λ1 0 −

√
2λ2

√
2λ2

0 λ1

√
2λ2 −

√
2λ2

−
√

2λ2

√
2λ2 λ1 0√

2λ2 −
√

2λ2 0 0

 . (2)

The degeneracy of the unperturbed states T+
+ and T−− and the fact that there

are no matrix-elements which couple these states require the use of second order
degenerate perturbation theory. Applying it yields the following matrix M :

M = A ·
(

1 −1
−1 1

)
, (3)

where the prefactor A is given by

A = −2λ2
2

(
1

∆1 + Jex
SL

+
1

∆2 + Jex
SL

)
. (4)

Diagonalization of M gives the second-order energy corrections

∆E(α) = λ1, (5)

∆E(β) = λ1 − 4λ2
2

(
1

∆1 + Jex
SL

+
1

∆2 + Jex
SL

)
, (6)
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and the correct linear combinations of the states T+
+ and T−−:

|α〉 =
1√
2

(
|T+

+〉+ |T−−〉
)

(7)

|β〉 =
1√
2

(
|T+

+〉 − |T−−〉
)
. (8)

Writing H in the basis {|α〉,|β〉,|L+ ↑, L− ↓〉,|S ↑, S ↓〉} yields:

H̃ =


−Jex

SL 0 0 0
0 −Jex

SL 0 0
0 0 ∆1 0
0 0 0 ∆2



+


λ1 0 0 0
0 λ1 −2λ2 2λ2

0 −2λ2 λ1 0
0 2λ2 0 0

 . (9)

We see that |α〉 stays unaffected by the perturbation, whereas |β〉 will change:

|β〉 → |β〉+2
λ2

∆1 + Jex
SL

|L+ ↑, L− ↓〉

−2
λ2

∆2 + Jex
SL

|S ↑, S ↓〉 . (10)

The mixing of T−+ and T+
− is caused by a pair-hopping term in the Hamil-

tonian, more precisely by

1

2
Jp
L+L−

∑
σ

(
d̂
†
L+σd̂

†
L+σ̄d̂L−σ̄d̂L−σ + h.c.

)
, (11)

which couples T−+ and T+
− to the following states:

|a〉 =
1√
2

d̂
†
H↑d̂

†
H↓

(
d̂
†
L+↑d̂

†
L+↓ − d̂

†
L−↑d̂

†
L−↓

)
|0〉 ,

|b〉 =
1√
2

d̂
†
H↑d̂

†
H↓

(
d̂
†
L+↑d̂

†
L+↓ + d̂

†
L−↑d̂

†
L−↓

)
|0〉 , (12)

with corresponding energies Ea and Eb = Ea+2Jp
L+L−. Then, after introducing

|T1〉 =
1√
2

(
|T−+〉+ |T+

−〉
)
,

|T2〉 =
1√
2

(
|T−+〉 − |T+

−〉
)
, (13)

the Hamiltonian in the basis of these four states can be written as

H =

(
H1b 0

0 H2a

)
, (14)
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with

H1b =

(
−Jex

SL − λ1 λ2

λ2 Eb

)
(15)

and

H2a =

(
−Jex

SL − λ1 λ2

λ2 Ea

)
. (16)

Diagonalization finally yields the four states

|1〉 =
1√

1− γ2
b

(|T1〉+ γb |b〉) ,

|2〉 =
1√

1− γ2
a

(|T2〉+ γa |a〉) ,

|1̃〉 =
1√

1− γ2
b

(|b〉 − γb |T1〉) ,

|2̃〉 =
1√

1− γ2
a

(|a〉 − γa |T2〉) , (17)

with the admixture γa/b ≈ −λ2

Ea/b+Jex
SL

. Their energies are approximately

E1 ≈ −λ1 −
λ2

2

Eb + Jex
SL + λ1

,

E2 ≈ −λ1 −
λ2

2

Ea + Jex
SL + λ1

,

E1̃ ≈ Eb +
λ2

2

Eb + Jex
SL + λ1

,

E2̃ ≈ Ea +
λ2

2

Ea + Jex
SL + λ1

. (18)

This analysis reproduces mixing and energy splittings consistent with our nu-
merical calculations.
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