Supporting Information

for

Single-molecule magnet behavior in 2,2'-bipyrimidinebridged dilanthanide complexes

Wen Yu^{1*}, Frank Schramm¹, Eufemio Moreno Pineda¹, Yanhua Lan², Olaf Fuhr¹, Jinjie Chen³, Hironari Isshiki³, Wolfgang Wernsdorfer², Wulf Wulfhekel³, and Mario Ruben^{1,4*}

Address: ¹Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, ²Université Grenoble Alpes / CNRS, Institut NEEL, 25 rue des Martyrs, F-38000 Grenoble, France, ³Physikalisches Institut (PI), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany, and ⁴Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France

Email: WenYu - wen.yu@kit.edu; Mario Ruben - mario.ruben@kit.edu * Corresponding author

Additional Experimental Information

Contents

Table S1: Sublimation points, the chemical shift δ and IR spectra peaks of 1–5. Table S2: Selected bond lengths [Å] and angles [°] for 1–5. Table S3: Continuous shaped measures (CShM) for {Ln ₂ } obtained using SHAPE.	3 4 5
Figure S1: Views of the coordination polyhedra surrounding the lanthanide ions. Color code used: grey for bipyrimidine ligand, green, pink, orange and dark blue for the espective tmhd ligands	.6
Figure S2: $\chi_{M}'(v)$, $\chi_{M}''(v)$ and $\chi_{M}'T(v)$ for 3 at zero DC field. Solid lines represent the ittings	7
Figure S3: χ_M "(<i>v</i>) for compound 5 at 2 K from 0 to 5 kG (solid lines are guide for the eve).	8
Figure S4: Hysteresis loops observed in the M_{β} as a function of applied magnetic field H_{β} .	8
Figure S5: Magnetization vs. field on a single crystal of Tb ₂ complex 2 at 0.03 K with lifferent field sweep rates (left) and at a 0.07 T/s sweep rate in the 0.03-5 K	-
emperature range	9
Figure S6: Magnetization vs field on a single crystal of Er_2 complex 5 at 0.03 K with lifferent field sweep rates (left) and at a 0.14 T/s sweep rate in the 0.03–5 K	
emperature range1	0

	Formula	Sublimation point	¹ H NMR (500 MHz, C	DCI ₃ , 298 I	IR (KBr disk) / cm ⁻¹			
		, 0	H-1	H-2	Methin	<i>t-</i> Bu	v(C=O)	v(C=C)	v(bpm)
1	[Gd(thmd) ₃] ₂ bpm	167 (1*10 ⁻³ mbar)	а	а	1.30	1.18	1576	1507	1420
2	[Tb(thmd) ₃] ₂ bpm	188 (6*10 ⁻² mbar)	16.19 - 15.20	6.56 - 5.75	-0.74	1.20	1576	1507	1420
3	[Dy(thmd) ₃] ₂ bpm	165 (1*10 ⁻³ mbar)	20.03	6.00	-2.77	1.17	1576	1507	1421
4	[Ho(thmd) ₃] ₂ bpm	180 (2.5*10 ⁻² mbar)		b			1576	1507	1424
5	[Er(thmd) ₃] ₂ bpm	160 (4*10 ⁻³ mbar)	40.32	27.48 - 23.37	-28.64 - -30.99	1.16	1577	1507	1425

Table S1: Sublimation points, the chemical shift δ and IR spectra peaks of 1–5.

^aThese resonances are broadened beyond detection. ^bThe chemical shifts couldn't be detected.

1	Distance / Å	2	Distance / Å	3	Distance / Å	4	Distance / Å	5	Distance / Å
Gd1-O1	2.363(3)	Tb1-O1	2.337(2)	Dy1-01	2.330(2)	Ho1-O1	2.326(3)	Er1-01	2.293(4)
Gd1-O2	2.318(3)	Tb1-O2	2.307(2)	Dy1-02	2.294(2)	Ho1-O2	2.290(3)	Er1-02	2.280(4)
Gd1-O3	2.277(3)	Tb1-O3	2.343(2)	Dy1-O3	2.296(2)	Ho1-O3	2.244(4)	Er1-03	2.269(4)
Gd1-O4	2.322(3)	Tb1-O4	2.305(2)	Dy1-O4	2.260(2)	Ho1-O4	2.285(4)	Er1-04	2.241(4)
Gd1-O5	2.321(3)	Tb1-O5	2.265(2)	Dy1-05	2.293(2)	Ho1-O5	2.288(4)	Er1-05	2.296(4)
Gd1-O6	2.352(3)	Tb1-O6	2.307(2)	Dy1-06	2.324(2)	Ho1-O6	2.310(3)	Er1-06	2.292(4)
Gd1-N1	2.631(4)	Tb1-N1	2.599(2)	Dy1-N1	2.581(2)	Ho1-N1	2.593(4)	Er1-N1	2.587(4)
Gd1-N3	2.613(4)	Tb1-N2	2.616(2)	Dy1-N2	2.604(2)	Ho1-N3	2.588(5)	Er1-N2	2.578(4)
Gd2-07	2.344(3)					Ho2-O7	2.302(3)		
Gd2-08	2.326(3)					Ho2-O8	2.288(3)		
Gd2-O9	2.285(3)					Ho2-O9	2.252(4)		
Gd2-O10	2.331(3)					Ho2-O10	2.301(4)		
Gd2-O11	2.321(3)					Ho2-O11	2.284(4)		
Gd2-O12	2.349(3)					Ho2-O12	2.308(3)		
Gd2-N2	2.631(4)					Ho2-N2	2.590(5)		
Gd2-N4	2.657(4)					Ho2-N4	2.618(4)		
1	Angles / º	2	Angles / º	3	Angles / º	4	Angles / º	5	Angles / º
O1-Gd1-O2	71.6(1)	O1-Tb1-O2	72.70(5)	01-Dy1-O2	72.57(7)	O1-Ho1-O2	72.6(1)	01-Er1-02	73.2(1)
O3-Gd1-O4	73.0(1)	O3-Tb1-O4	72.20(5)	O3-Dy1-O4	74.13(7)	O3-Ho1-O4	73.9(1)	03-Er1-04	74.4(1)
O5-Gd1-O6	72.4(1)	O5-Tb1-O6	73.76(6)	O5-Dy1-O6	72.95(7)	O5-Ho1-O6	73.5(1)	05-Er1-06	72.9(1)
N1-Gd1-N3	61.7(1)	N1-Tb1-N2	62.07(5)	N1-Dy1-N2	62.37(7)	N1-Ho1-N3	62.5(1)	N1-Er1-N2	62.6(1)
07-Gd2-O8	71.9(1)					O7-Ho2-O8	73.1(1)		
O9-Gd2-O10	73.2(1)					O9-Ho2-O10	73.3(1)		
O11-Gd2-O12	72.2(1)					O11-Ho2-O12	73.4(1)		
N2-Gd2-N4	61.0(1)					N2-Ho2-N4	62.2(1)		

 Table S2:
 Selected bond lengths [Å] and angles [°] for 1–5.

CShM	Gd(1)	Gd(2)	Tb(1)	Tb(2)	Dy(1)	Dy(2)	Ho(1)	Ho(2)	Er(1)	Er(2)
OP-8	35.832	30.374	30.219	30.219	30.205	30.205	30.263	30.151	29.855	46.201
HPY-8	23.057	22.242	22.339	22.339	22.442	22.442	22.328	22.549	22.330	36.352
HBPY-8	21.536	14.987	15.442	15.442	15.407	15.407	15.442	14.886	15.998	33.333
CU-8	15.995	8.231	8.851	8.851	8.796	8.796	8.460	8.218	9.076	31.299
SAPR-8	8.338	0.741	0.621	0.621	0.605	0.605	0.671	0.664	0.534	25.852
TDD-8	9.822	2.341	2.407	2.407	2.375	2.375	2.180	2.361	2.331	27.145
JGBF-8	19.999	15.997	16.085	16.085	16.138	16.138	16.572	15.786	16.555	33.117
JETBPY-8	22.099	27.493	27.490	27.490	27.633	27.633	28.002	27.740	28.138	39.774

Table S3: Continuous shaped measures (CShM) for {Ln₂} obtained using SHAPE.

OP-8 = (D_{8h}) Octagon

HPY-8 = (C_{7v}) Heptagonal pyramid

HBPY-8 = (D_{6h}) Hexagonal bipyramid

CU-8 = (O_h) Cube

SAPR-8 = (D_{4d}) Square antiprism

TDD-8 = (D_{2d}) Triangular dodecahedron

JGBF-8 = (D_{2d}) Johnson gyrobifastigium J26 **JETBPY-8** = (D_{3h}) Johnson elongated triangular bipyramid J14

JBTPR-8 = (C_{2v}) Biaugmented trigonal prism J50

BTPR-8 = (C_{2v}) Biaugmented trigonal pris **JSD-8** = (D_{2d}) Snub diphenoid J84 **TT-8** = (T_d) Triakis tetrahedron

ETBPY-8 = (D_{3h}) Elongated trigonal bipyramid

Figure S1: Views of the coordination polyhedra surrounding the lanthanide ions. Color code used: grey for bipyrimidine ligand, green, pink, orange and dark blue for the respective tmhd ligands.

Figure S2: $\chi_M'(v)$, $\chi_M''(v)$ and $\chi_M'T(v)$ for **3** at zero DC field. Solid lines represent the fittings.

Figure S3: χ_M "(*v*) for compound 5 at 2 K from 0 to 5 kG (solid lines are guide for the eye).

Figure S4: Hysteresis loops observed in the M_{β} as a function of applied magnetic field (*H*).

Figure S5: Magnetization vs. field on a single crystal of Tb_2 complex 2 at 0.03 K with different field sweep rates (left) and at a 0.07 T/s sweep rate in the 0.03-5 K temperature range.

Figure S6: Magnetization vs field on a single crystal of Er_2 complex 5 at 0.03 K with different field sweep rates (left) and at a 0.14 T/s sweep rate in the 0.03–5 K temperature range.