Supporting Information

for

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan[®] in comparison to the conventional façade paint Jumbosil[®]

Florian Antony^{1,2,3}, Rainer Grießhammer², Thomas Speck^{1,3,4,5} and Olga Speck^{*1,3,5}

Address: ¹Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany, ²Öko-Institut e.V., Institute for Applied Ecology, 79017 Freiburg, Germany, ³Competence Network Biomimetics, Germany, ⁴Freiburg Materials Research Center (FMF), 79104 Freiburg, Germany and ⁵Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), 79110 Freiburg, Germany

Email: Olga Speck* - olga.speck@biologie.uni-freiburg.de

* Corresponding author

Detailed data

Table S1: Comparison of the bill of formulation components for the two façade paints Lotusan[®] and Jumbosil[®].

Material	Lotusan [®] [mass %]	Jumbosil [®] [mass %]	Used dataset (ecoinvent V3.01) [1]
Water-based polymer dispersion; 50 % styrene-acrylic	10	23.8	25 % styrene production [RER] + 12.5 % methyl methacrylate production [RER] + 50 % market for tap water, at user [Europe without Switzerland] + 12.5 % butyl acrylate production [RER]
Pigment, titanium dioxide (TiO ₂)	20	10	Market for titanium dioxide [RER]
Filler (rock flour)	34.4	44.4	Limestone production, crushed, for mill [CH]
Aliphatic solvents	0.5	0.9	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
Glycol ether		1	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
In-can preservation		0.6	50% chemical production, inorganic [GLO] + 50 % chemical production, organic [GLO]
Film preservation		0.4	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
Dispersing agent	0.1	0.4	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
Defoaming agent	0.2	0.2	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
Methyl cellulose	0.1	0.2	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
Thickener	0.5	0.2	50% chemical production, inorganic [GLO] + 50% chemical production, organic [GLO]
Water	28.2	38.3	Tap, water at user [RER]
Hydrophobizing agent	1		Silicone product production [RER]
Fibres (cellulose)	1		Cellulose fibre production, inclusive blowing in [CH]
Silicone resin	4		Silicone product production [RER]
Total	100	100	

Table S2: Environmental impact categories observed within this study.

Valuation System	Impact Indicator	Abbre- viation	Unit	Short Description	Source/ citation			
Cumulative	Cumulative	CED _{fossil}	MJ	Summarizes the total energy input of all fossil	[2]			
Energy	Fossil Energy	CLLD fossil	1115	forms of energy as a value or primary energy	[-]			
Demand	Demand			demand. The CED $_{\text{fossil}}$ is given in MJ.				
Demana	Cumulative	CED _{nuclear}	MJ	Summarizes the total energy input of nuclear	-			
	Nuclear Energy	CLLD nuclear	1115	energy as a value or primary energy demand.				
	Demand			The $CED_{nuclear}$ is given in MJ.				
	Cumulative Non-	CED _{non-renewable}	MJ	Summarizes the total energy input of all not				
	renewable	C222 non-renewable	1.10	renewable forms of energy as a value or				
	Energy Demand			primary energy demand. The CED _{non-renewable} is				
				given in MJ.				
IPCC 2007	100 years Global	GWP _{100a}	kg CO ₂ e ^a	Based on the anthropogenic greenhouse gas	[3]			
II CC 2007	Warming	0 11 100a	ng 0020	emissions. All greenhouse gas emissions are	[0]			
	Potential			summed up, whereby the gases' specific Global				
	rotonnar			Warming Potential is expressed in comparison				
				to the CO_2 . The GWP is given in units of				
				kilograms of CO_2 equivalent, which means that				
				amount of CO_2 that has the same degree of				
				effectiveness as another greenhouse gas.				
ReCiPe	Water Depletion	WDP	m ³	Freshwater is not only a scarce resource in	[2]			
Midpoint	Potential	11 DI		many regions; it is an indispensable	[-]			
(H) w/0 LT	rotontia			prerequisite for many organisms. Furthermore,				
(11) w/0 L1				freshwater can be seen as a renewable abiotic				
				resource, that is irreversible exhausted only in				
				few processes (i.e. hydrolysis of cement in				
				concrete production). The impact indicator				
				WDP regards the usage of water in terms of				
				used water volume. WDP is an life cycle				
				inventory indicator, with an only formal				
				characterization factor of 1m ³ /m ³ for all types				
				of water, regardless of its source and for				
				example local or regional scarcities.				
		TAP 100	kg SO ₂ e ¹	A lowering of the soil pH value is mainly				
	Terrestrial	1AI 100	kg 50 ₂ e	caused by sulphur dioxide, ammonia, and				
	Acidification w/o			nitrogen oxides. Sulphur dioxide is the key				
	LT, w/o LT			indicator for the quantification of the				
				acidification potential. All other emissions with				
				a pH value lowering effect are therefore related				
				to the effectiveness of sulphur dioxide				
				equivalents.				
	Freshwater	FEP	kg Pe ¹	Describes the potential for excessive	1			
	Eutrophication	111	Agic	accumulation of freshwaters and is also called				
	Potential			"over-fertilization" potential. The FEP is given				
	- otontiui			as kg phosphor equivalent				
	Marina	MEP	kg Ne ¹	Describes the potential for excessive	1			
	Marine	1711./1	Ng INC	accumulation of marine waters and is also				
	Eutrophication			called "over-fertilization" potential. The MEP				
	Potential			is given as kg nitrogen equivalent				
	Photochemical	POFP	ka	As a result of chemical reactions of nitrogen	-			
	Ozone Formation	rurr	kg NMVOC	-				
	Potential			oxides with volatile organic compounds under the influence of ultraviolet light, ozone results				
	rotential							
		1		from photochemical reaction in near-ground air	1			

Valuation	Impact	Abbre-	Unit	Short Description	Source/
System	Indicator	viation			citation
				methane volatile organic compound.	
	Agricultural	ALOP	m²*a	The indicator Agricultural land occupation	
	Land Occupation			potential adds up to the amount of	
	Potential			agriculturally used land, needed to fulfil the	
				function of an investigated product system. It is	
				expressed in the unit square meter multiplied	
				with one year as a time factor.	
	Particulate	PMFP	kg	Describes the Potential of a product or product	
	Matter		PM10e ¹	system to build Particulate Matter. It is	
	Formation			expressed in the unit PM10 equivalents which	
	Potential			mean particles with an average diameter of	
				about 10 μm.	
USEtox	Human Toxicity,	USE tox _{humantox}	CTU _h	The USEtox human toxicity potential is	[2]
	total			expressed in comparative toxic units (CTU _h),	
				the estimated increase in morbidity in the total	
				human population, per unit mass of a chemical	
				emitted. The indicator CTU _h per kg emitted can	
				also be described as disease cases per kg	
				emitted.	
	Ecotoxicity, total	USEtox _{ecotox}	CTU _e	The USEtox ecotoxicity potential (aquatic	
				ecotoxicity impacts) is also expressed in	
				comparative toxic units (CTU _e), an estimate of	
				the potentially affected fraction of species	
				(PAF) integrated over time and volume per unit	
				mas of a chemical emitted.	

^aThe letter "e" stands for "equivalent".

Impact category Façado		Bill of Materials		Packaging		Production		Distribution		Use Phase		End of Life- Treatment		Sum	
[Unit]	[Unit] paint		rel.	abs.	rel.	abs.	rel.	abs.	rel.	abs.	rel.	abs.	rel.	abs.	rel.
CED _{non-renewable}	Lotusan®	5.2E+03	55.8%	6.7E+02	7.2%	2.8E+02	3.0%	6.7E+02	7.1%	2.5E+03	26.3%	4.8E+01	0.5%	9.3E+03	100.0%
[MJ]	Jumbosil®	8.9E+03	62.1%	9.3E+02	6.5%	4.0E+02	2.8%	9.5E+02	6.6%	3.1E+03	21.4%	6.9E+01	0.5%	1.4E+04	100.0%
GWP _{100a}	Lotusan®	3.7E+02	57.0%	2.4E+01	3.7%	1.8E+01	2.7%	4.1E+01	6.4%	1.6E+02	24.4%	3.8E+01	5.9%	6.4E+02	100.0%
[kg CO ₂ e]	Jumbosil®	5.2E+02	58.7%	3.4E+01	3.8%	2.5E+01	2.8%	5.9E+01	6.6%	2.0E+02	22.0%	5.4E+01	6.1%	8.9E+02	100.0%
WDP	Lotusan®	4.3E+00	89.5%	7.5E-02	1.5%	1.7E-01	3.5%	4.6E-02	0.9%	2.0E-01	4.1%	1.7E-02	0.4%	4.8E+00	100.0%
[m ³]	Jumbosil®	3.1E+00	81.9%	1.0E-01	2.7%	2.5E-01	6.5%	6.5E-02	1.7%	2.5E-01	6.5%	2.4E-02	0.6%	3.8E+00	100.0%
TAP _{100a}	Lotusan®	2.2E+00	74.4%	8.8E-02	3.0%	2.4E-02	0.8%	1.4E-01	4.8%	4.8E-01	16.5%	1.4E-02	0.5%	2.9E+00	100.0%
[kg SO ₂ e]	Jumbosil®	3.1E+00	76.1%	1.2E-01	3.0%	3.4E-02	0.8%	2.0E-01	4.9%	6.0E-01	14.7%	1.9E-02	0.5%	4.1E+00	100.0%
FEP	Lotusan®	1.2E-01	72.2%	6.3E-03	3.8%	2.0E-02	11.7%	4.6E-03	2.7%	1.6E-02	9.5%	1.8E-04	0.1%	1.7E-01	100.0%
[kg Pe]	Jumbosil®	1.1E-01	63.9%	8.7E-03	5.0%	2.8E-02	16.0%	6.5E-03	3.7%	2.0E-02	11.2%	2.5E-04	0.1%	1.8E-01	100.0%
MEP	Lotusan®	1.3E-01	76.3%	4.2E-03	2.4%	5.8E-03	3.3%	7.0E-03	4.1%	2.3E-02	13.3%	9.7E-04	0.6%	1.7E-01	100.0%
[kg Ne]	Jumbosil [®]	1.6E-01	74.7%	5.8E-03	2.7%	8.3E-03	3.9%	1.0E-02	4.7%	2.9E-02	13.4%	1.4E-03	0.7%	2.1E-01	100.0%
POFP	Lotusan®	1.5E+00	58.9%	8.3E-02	3.4%	1.9E-02	0.8%	2.1E-01	8.6%	6.8E-01	27.3%	2.5E-02	1.0%	2.5E+00	100.0%
[kg NMVOC]	Jumbosil [®]	1.9E+00	58.5%	1.2E-01	3.6%	2.7E-02	0.9%	3.1E-01	9.5%	8.5E-01	26.4%	3.6E-02	1.1%	3.2E+00	100.0%
ALOP	Lotusan®	1.9E+01	60.0%	8.6E+00	26.7%	5.8E-01	1.8%	7.0E-01	2.2%	2.6E+00	8.2%	4.1E-01	1.3%	3.2E+01	100.0%
[m ² a]	Jumbosil [®]	1.2E+01	40.6%	1.2E+01	40.6%	8.3E-01	2.7 %	1.0E+00	3.3%	3.3E+00	10.8%	5.9E-01	1.9%	3.1E+01	100.0%
USE tox _{humantox}	Lotusan®	5.2E-05	68.7%	4.0E-06	5.4%	6.2E-07	0.8%	3.3E-06	4.4%	1.5E-05	20.0%	5.1E-07	0.7%	7.5E-05	100.0%
[CTU]	Jumbosil®	4.7E-05	60.8%	5.6E-06	7.3%	8.9E-07	1.2%	4.7E-06	6.2%	1.9E-05	24.6%	0.0E+00	0.0%	7.7E-05	100.0%
USEtox _{ecotox}	Lotusan®	1.3E+03	90.5%	1.1E+01	0.7%	2.1E+00	0.1%	2.2E+01	1.5%	9.8E+01	6.8%	4.3E+00	0.3%	1.4E+03	100.0%
[CTU]	Jumbosil®	1.0E+03	85.2%	1.6E+01	1.3%	3.1E+00	0.3%	3.1E+01	2.6%	1.2E+02	10.2%	6.2E+00	0.5%	1.2E+03	100.0%
PMFP	Lotusan®	9.0E-01	70.7%	3.9E-02	3.0%	8.6E-03	0.7%	7.0E-02	5.5%	2.5E-01	19.6%	6.6E-03	0.5%	1.3E+00	100.0%
[PM10e]	Jumbosil®	9.5E-01	65.9%	5.4E-02	3.8%	1.3E-02	0.9%	1.0E-01	7.0%	3.1E-01	21.8%	9.3E-03	0.7%	1.4E+00	100.0%

Table S3: Contribution to impact categories by life cycle stages for the two compared paints given as absolute values and in terms of the relative share of each overall result.^a

^aAll values are related to the functional unit. It has to be noted that values may contain impact indicator-specific rounding differences.

				Polymer	Polymer dispersion										
				dispersion	(methyl	Polymer	Polymer	Filler	Chemicals				Hydropho		
Impact	Façade		Pigment	(butyl	methacryl	dispersion	dispersion	(rock	,	Chemicals	Fibres	Silicone	bizing	Transport	
category	paint	Water	(TiO ₂)	acrylate)	ate)	(styrene)	(water)	flour)	inorganic	, organic	(cellulose)	resin	agent	services	Sum
CED _{non-renewable}	Lotusan®	0.01%	68.47%	3.96%	5.06%	6.65%	<0.01%	0.04%	0.76%	1.39%	0.15%	9.52%	2.48%	1.50%	100%
	Jumbosil®	0.01%	38.01%	13.78%	18.22%	22.43%	0.01%	0.04%	2.14%	3.56%				1.80%	100%
GWP _{100a}	Lotusan®	0.01%	72.24%	2.94%	4.70%	7.05%	<0.01%	0.05%	1.17%	0.59%	0.10%	7.05%	1.76%	2.35%	100%
	Jumbosil®	<0.01%	36.28%	11.30%	18.44%	25.58%	<0.01%	0.06%	2.38%	2.38%				3.57%	100%
WDP	Lotusan®	1.49%	93.62%	0.41%	0.05%	0.52%	0.26%	0.31%	0.36%	0.10%	0.05%	2.11%	0.53%	0.18%	100%
	Jumbosil®	1.78%	86.16%	2.78%	0.35%	3.58%	1.80%	0.73%	1.86%	0.49%		%		0.47%	100%
TAP _{100a}	Lotusan®	<0.01%	83.75%	1.92%	3.20%	2.57%	<0.01%	0.12%	0.93%	0.51%	0.08%	4.75%	1.19%	0.97%	100%
	Jumbosil®	<0.01%	60.18%	8.32%	13.86%	11.11%	<0.01%	0.18%	3.04%	1.68%				1.62%	100%
FEP	Lotusan®	0.01%	84.96%	1.77%	0.67%	2.49%	<0.01%	0.02%	1.02%	0.49%	0.14%	6.74%	1.68%	0.01%	100%
	Jumbosil®	0.01%	65.40%	10.07%	3.81%	14.18%	0.01%	0.03%	4.36%	2.10%				0.02%	100%
MEP	Lotusan®	<0.01%	73.86%	1.01%	5.99%	1.60%	<0.01%	0.13%	0.66%	0.33%	0.17%	5.57%	1.39%	9.29%	100%
	Jumbosil®	<0.01%	43.50%	4.41%	26.10%	6.96%	<0.01%	0.20%	2.18%	1.08%				15.56%	100%
POFP	Lotusan®	<0.01%	76.43%	2.49%	4.93%	4.15%	<0.01%	0.29%	0.78%	0.86%	0.14%	5.91%	1.48%	2.55%	100%
	Jumbosil®	<0.01%	42.74%	10.24%	20.38%	17.06%	<0.01%	0.41%	2.44%	2.68%				4.04%	100%
ALOP	Lotusan®	0.01%	63.06%	1.50%	0.03%	1.74%	<0.01%	0.03%	1.07%	0.18%	7.08%	21.02%	4.28%	<0.01%	100%
	Jumbosil®	0.01%	66.94%	11.74%	0.20%	13.63%	0.01%	0.09%	6.34%	1.04%				0.01%	100%
USE tox _{humantox}	Lotusan®	0.01%	89.43%	1.29%	0.44%	2.04%	<0.01%	0.02%	0.91%	0.32%	0.19%	3.92%	0.98%	0.45%	100 %
	Jumbosil®	0.01%	71.29%	7.60%	2.59%	11.99%	0.01%	0.05%	4.03%	1.41%				1.03%	100%
USEtox _{ecotox}	Lotusan®	<0.01%	97.46%	0.16%	0.11%	0.99%	<0.01%	0.00%	0.33%	0.11%	0.03%	0.49%	0.14%	0.16%	100%
	Jumbosil®	<0.01%	89.42%	1.21%	0.60%	6.34%	<0.01%	0.01%	1.51%	0.60%				0.30%	100%
PMFP	Lotusan®	<0.01%	83.59%	1.84%	2.59%	2.35%	<0.01%	0.59%	0.85%	0.54%	0.11%	5.15%	1.29%	1.10%	100%
	Jumbosil®	<0.01%	57.34%	9.30%	13.04%	11.86%	<0.01%	1.04%	3.23%	2.05%				2.14%	100%

Table S4: Detailed analysis for the contributions arising from the bill of formulation components^a.

^aResults are given for the provision of raw materials required for the production of 1 kg of each façade paint.

References

- [1] ecoinvent Centre Ed. ecoinvent data V3.01. Swiss Centre for Life Cycle Inventories, 2013. www.ecoinvent.org (accessed July 16, 2015).
- [2] Hischier, R.; Weidema, B., Eds. Implementation of Life Cycle Impact Assessment Methods. Data V2.2 2010, *ecoinvent report No. 3*, St. Gallen, Switzerland.
- [3] Change, Climate. "Intergovernmental Panel on Climate Change." World Meteorological Organization, 2007.