Supporting Information for # Influence of calcium on ceramide-1-phosphate monolayers Joana S. L. Oliveira*¹, Gerald Brezesinski¹, Alexandra Hill² and Arne Gericke² Address: ¹Max Planck Institute of Colloids and Interfaces, Colloid Chemistry Department, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany and ²Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA Email: Joana Santos Lapa Oliveira* - joana.oliveira@mpikg.mpg.de Full experimental data ^{*} Corresponding author #### 1 Thermodynamic analysis of C1P on pH 9 subphase without calcium At pH 9 without calcium, C1P undergoes a first-order phase transition from the LE to the LC phase, which can be seen to start at 15 °C. Such transition can be related to the change in area by the two-dimensional Clausius–Clapeyron equation: $\Delta H_c/T = \Delta S_{Tr} = (\delta \pi_c/\delta T) \cdot \Delta A$, where ΔH_c and ΔS_{Tr} are the transition enthalpy and entropy (per molecule), respectively, between two coexisting phases, π_c and T are the surface pressure and temperature, respectively, at which the phase transition occurs and ΔA is the difference in area per molecule between the LE area and the LC area at the transition surface pressure. The transition enthalpy for such system can then be calculated by $\Delta Q = T\Delta S$. The values obtained for this system are presented in Table S1. **Table S1:** Thermodynamic parameters of the analysed system. | T | $\pi_{ m c}$ | $A_{ m LC}$ | $A_{ m LE}$ | $A_{ m LC} - A_{ m LE}$ | $\Delta S_{ m Tr}$ | $\Delta Q_{ m Tr}$ | |--------|--------------|-------------|-------------------------|-------------------------|--------------------|--------------------| | (K) | (mN/m) | (Å | ² /molecule) | | (J/mol·K) | (kJ/mol) | | 293.15 | 6.4 | 48.9 | 70.2 | -21.3 | -148.91 | -43.65 | | 301.15 | 14.1 | 46.8 | 58.8 | -12 | -83.89 | -25.26 | | 303.15 | 18.8 | 45.6 | 55 | -9.4 | -65.71 | -19.92 | The extrapolation of the linear fit of $\pi_c = f(T)$ towards $\pi_c = 0$ leads to 14.7 °C. On the other hand, the critical temperature at which it is no longer possible to obtain a LC phase can be determined by extrapolation of the linear fit of $\Delta Q_{\rm Tr} = f(T)$ towards $\Delta Q_{\rm Tr} = 0$, which leads to 38.1 °C. ### 2 Surface pressure-area isotherm of C1P In Figure S1 the surface pressure—area isotherm of C1P on water at 20°C is presented. **Figure S1:** Surface pressure–area isotherm of C1P on water at 20°C. #### 3 GIXD measurements In Tables S2–S6, the GIXD peak positions (Q_{xy} and Q_z) with tilt (t), distortion (d), cross-sectional area (A_0), and in-plane lattice area of a single chain (Axy) are given for pH 9 and pH 4 with and without calcium and on water. **Table S2:** GIXD measurements on water at 20 °C. | π | Q_{xy}^{-1} | Q_z^{-1} | Q_{xy}^{2} | Q_z^2 | t | d | A_0 | A_{xy} | |--------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|--------|--------------------|--------------------| | (mN/m) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (°) | | (\mathring{A}^2) | (\mathring{A}^2) | | 0 | 1.48 | 0.30 | 1.50 | 0.15 | 11.5 ± 1 | 0.0107 | 20.1 ± 0.4 | 20.5 ± 0.4 | | 1 | 1.49 | 0.24 | 1.50 | 0.12 | 9.3 ± 1 | 0.0071 | 20.2 ± 0.4 | 20.4 ± 0.4 | | 5 | 1.50 | 0 | 1.50 | 0.06 | 2.6 ± 1 | 0 | 20.2 ± 0.4 | 20.2 ± 0.4 | | 10 | 1.51 | 0 | _ | _ | 0 | 0 | 20.1 ± 0.4 | 20.1 ± 0.4 | | 20 | 1.52 | 0 | _ | _ | 0 | 0 | 19.8 ± 0.4 | 19.8 ± 0.4 | **Table S3:** GIXD measurements at pH 9 and 20 $^{\circ}$ C (borax buffer with 150 mM NaCl and 1 mM CaCl₂). | π | Q_{xy}^{-1} | Q_z^{-1} | Q_{xy}^{2} | Q_z^2 | Q_{xy}^{3} | Q_z^3 | t | d | A_0 | A_{xy} | |--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|-------|--------------------|--------------------| | (mN/m) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (°) | | (\mathring{A}^2) | (\mathring{A}^2) | | 5 | 1.34 | 0.51 | 1.45 | 0.41 | 1.59 | 0.10 | 22.5 ± 1 | 0.197 | 20.1 ± 0.4 | 21.7 ± 0.4 | | 10 | 1.35 | 0.51 | 1.45 | 0.40 | 1.60 | 0.10 | 22.2 ± 1 | 0.198 | 20.0 ± 0.4 | 21.6 ± 0.4 | | 20 | 1.36 | 0.49 | 1.47 | 0.37 | 1.61 | 0.09 | 21.2 ± 1 | 0.197 | 19.8 ± 0.4 | 21.3 ± 0.4 | | 30 | 1.36 | 0.47 | 1.48 | 0.34 | 1.61 | 0.09 | 19.9 ± 1 | 0.194 | 19.7 ± 0.4 | 21.0 ± 0.4 | **Table S4:** GIXD measurements at pH 9 and 20 °C (borax buffer with 150 mM NaCl and 1 mM EDTA). | π | Q_{xy}^{-1} | Q_z^{-1} | Q_{xy}^{2} | Q_z^2 | t | d | A_0 | A_{xy} | |--------|--------------------|-----------------------|-----------------------|-----------------------|--------------|--------|--------------------|--------------------| | (mN/m) | (Å ⁻¹) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (°) | | (\mathring{A}^2) | (\mathring{A}^2) | | 15 | 1.40 | 0.53 | 1.46 | 0.27 | 20.9 ± 1 | 0.0615 | 20.5 ± 0.4 | 22.0 ± 0.4 | | 20 | 1.41 | 0.46 | 1.47 | 0.23 | 17.9 ± 1 | 0.0521 | 20.6 ± 0.4 | 21.7 ± 0.4 | | 30 | 1.44 | 0.37 | 1.48 | 0.18 | 14.3 ± 1 | 0.0353 | 20.5 ± 0.4 | 21.2 ± 0.4 | | 35 | 1.47 | 0.28 | 1.49 | 0 | 12.4 ± 1 | 0.0208 | 20.4 ± 0.4 | 20.9 ± 0.4 | | 40 | 1.48 | 0.24 | 1.50 | 0 | 10.4 ± 1 | 0.0153 | 20.3 ± 0.4 | 20.7 ± 0.4 | **Table S5:** GIXD measurements at pH 4 and 20 °C (citric buffer with 150 mM NaCl and 1 mM EDTA). | π | Q_{xy}^{-1} | Q_z^{-1} | Q_{xy}^{2} | Q_z^2 | Q_{xy}^{3} | Q_z^3 | t | d | A_0 | A_{xy} | |--------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|--------|--------------------|--------------------| | (mN/m) | (Å ⁻¹) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (°) | | (\mathring{A}^2) | (\mathring{A}^2) | | 5 | 1.42 | 0.55 | 1.44 | 0.39 | 1.49 | 0.16 | 21.8 ± 1 | 0.0609 | 20.2 ± 0.4 | 21.7 ± 0.4 | | 10 | 1.45 | 0.42 | 1.47 | 0.29 | 1.49 | 0.12 | 16.6 ± 1 | 0.0340 | 20.2 ± 0.4 | 21.1 ± 0.4 | | 20 | _ | _ | 1.48 | 0.22 | 1.50 | 0 | 9.8 ± 1 | 0.0135 | 20.4 ± 0.4 | 20.7 ± 0.4 | | 30 | _ | _ | _ | _ | 1.50 | 0 | 0 | 0 | 20.2 ± 0.4 | 20.2 ± 0.4 | **Table S6:** GIXD measurement at pH 4 and 20 $^{\circ}$ C (citric buffer with 150 mM NaCl and 1 mM CaCl₂). | π | Q_{xy}^{-1} | Q_z^{-1} | Q_{xy}^{2} | Q_z^2 | Q_{xy}^{3} | Q_z^3 | t | d | A_0 | A_{xy} | |--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------|--------|--------------------|--------------------| | (mN/m) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (\mathring{A}^{-1}) | (°) | | (\mathring{A}^2) | (\mathring{A}^2) | | 2 | 1.41 | 0.52 | 1.44 | 0.37 | 1.49 | 0.15 | 21.1±1 | 0.0711 | 20.4±0.4 | 21.9±0.4 | | 10 | 1.43 | 0.46 | 1.45 | 0.35 | 1.50 | 0.10 | 18.6±1 | 0.0536 | 20.4±0.4 | 21.5±0.4 | | 20 | _ | _ | 1.47 | 0.32 | 1.50 | 0 | 14.4±1 | 0.0356 | 20.2±0.4 | 20.9±0.4 | | 30 | _ | _ | 1.48 | 0.25 | 1.50 | 0 | 11.2±1 | 0.0207 | 20.2±0.4 | 20.6±0.4 | | 40 | _ | _ | | | 1.51 | 0 | 0 | 0 | 20.1±0.4 | 20.1±0.4 |