Supporting Information

for

AgCI-doped CdSe quantum dots with near-IR photoluminescence

Pavel A. Kotin*¹, Sergey S. Bubenov¹, Natalia E. Mordvinova^{1,2} and Sergey G. Dorofeev¹

Address: ¹Department of Chemistry, Lomonosov Moscow State University, 1 building 3 Leninskie Gory, Moscow 119991, Russia and ²Laboratoire CRISMAT, UMR6508, CNRS-ENSICAEN, 6 boulevard Marechal Juin, Caen 14050, France

Email: Pavel Aleksandrovich Kotin* - kotin-pa@mail.ru

Additional figures, data and experimental information

^{*} Corresponding author

Additional TEM images of samples

Figure S1: TEM images of samples AgCl_0 to AgCl_40. The scale bar is 50 nm.

Additional XRD pattern

Figure S2: XRD pattern of deposition from the Sample AgCl_40 during the storage.

Additional optical data

Figure S3: Semi-log plot of PL spectrum of undoped CdSe QDs.

Table S1: Positions of exciton bands, LEPs and energy difference between them.

Sample	Exciton, eV	LEP, eV	ΔE , eV
AgCI_0	2.21	1.6 (spherical)	0.61
AgCI_1	1.82	_	_
AgCI_2	1.80	1.36	0.42
AgCI_4	1.78	1.44	0.34
AgCI_8	1.78	1.34	0.44
AgCI_10	1.79	1.34	0.45

AgCI_12	1.82	1.36	0.46
AgCI_16	1.85	1.40	0.45
AgCI_24	1.92	1.42	0.50
AgCI_32	2.03	1.52	0.51
AgCI_40	2.07	1.57	0.50

Figure S4: PL spectra (top) and absorbance (bottom) of different fractions of sample AgCI_4.

The procedure of separation between different

fractions

Separation of TPs and EPs was performed by centrifugation in a high-speed centrifuge (21000*g*). We refer to EPs as heavy fraction and to TPs as light fraction. Slow deposition of TPs is due to higher hydrodynamic size-mass ratio and larger surface area (which results in a larger number of ligands and increased solubility) than that of EPs.

The typical procedure of isolation of heavy fraction implies a number of 5 min centrifugations. The fraction was selected from the bottom of centrifuge tube. A series of short time acts is required to prevent the coprecipitation of light fraction. Isolation of EPs from the sample AgCl_1 required five iterations of 5 min centrifuging, for the Samples AgCl_2, AgCl_4, AgCl_8, AgCl_10 it required four, four, two and one iterations of 5 minute centrifuging respectively.

The procedure of isolation of light fraction implies three 30 min centrifugations. The fraction was selected from the top of the centrifuge tube. A long time is required to fully remove the heavy fraction.

Purity of reagents

The starting chemicals used were cadmium acetate, Cd(CH₃COO)₂·2H2O (analytical-grade); silver chloride, AgCl (analytical-grade); oleic acid (Fluke, 95%); trioctylphosphine (TOP) (Aldrich, 90%); selenium (extrapure grade); acetone, hexane and dodecane (extrapure grade); diphenyl ether (abcr, 99%).