Supporting Information

for

Comprehensive investigation of the electronic excitation of W(CO)₆ by photoabsorption and theoretical analysis in the energy region from 3.9 to 10.8 eV

Mónica Mendes¹, Khrystyna Regeta¹, Filipe Ferreira da Silva¹, Nykola C. Jones², Søren Vrønning Hoffmann², Gustavo García³, Chantal Daniel^{*,4} and Paulo Limão-Vieira^{*,1}

Address: ¹Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; ²ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000, Aarhus C, Denmark ³Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain and ⁴Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg, UMR7177 CNRS/Université de Strasbourg 1 Rue Blaise Pascal BP296/R8, F-67008 Strasbourg, France

Email: Paulo Limão-Vieira* - plimaovieira@fct.unl.pt; Chantal Daniel* - c.daniel@unistra.fr; * Corresponding author

Additional computational data

Figure S1: Kohn–Sham orbitals of $W(CO)_6$ (O_h symmetry) involved in major electronic transitions.

Figure S2: TDDFT spectrum of W(CO)₆ without spin–orbit coupling.

Table S1: Transition energies (in eV), oscillator strengths (>10⁻³) and character of the lowest singlet states without spin–orbit coupling.

state	transition energy	oscillator	character
	(eV)	strength	
$1^{1}T_{1u}$	4.12	0.024	¹ MLCT _{CO}
$2^{1}T_{1u}$	6.10	0.93	¹ MLCT _{CO}
3 ¹ T _{1u}	8.28	0.035	¹ MLCT _{CO}
$1^{1}T_{1g}$	7.21	0.0	¹ MC
1 ¹ T _{2g}	7.43	0.0	¹ MC
$4^{1}T_{1u}$	10.02	0.067	¹ IL
5 ¹ T _{1u}	10.26	0.035	¹ IL
$7^{1}T_{1u}$	10.52	0.083	¹ IL
8 ¹ T _{1u}	10.88	0.042	¹ IL
9 ¹ T _{1u}	10.97	0.042	$^{1}\mathrm{IL}$
$10^{1}T_{1u}$	11.12	0.011	$^{1}\mathrm{IL}$
$11^{1}T_{1u}$	11.21	0.017	¹ IL
$12^{1}T_{1u}$	11.52	0.001	¹ IL

Table S2: Transition energies (in eV) and character of the lowest triplet states without spinorbit coupling.

state	transition energy	character
	(eV)	
$1^{3}A_{2u}$	3.46	³ MLCT _{CO}
$1^{3}T_{1u}$	3.46	³ MLCT _{CO}
$1^{3}T_{2u}$	3.59	³ MLCT _{CO}
$1^{3}E_{u}$	3.60	³ MLCT _{CO}
$2^{3}E_{u}$	4.27	³ MLCT _{CO}
$1^{3}A_{1u}$	4.37	³ IL
$2^{3}T_{1u}$	4.38	³ MLCT _{CO}
$2^{3}T_{2u}$	4.42	³ MLCT _{CO}
$1^{3}E_{g}$	5.28	³ MLCT _{CO}
$1^{3}A_{2g}$	5.39	³ MLCT _{CO}
$1^{3}T_{2g}$	5.54	³ MLCT _{CO}
$1^{3}T_{1g}$	5.62	³ MLCT _{CO}
$1^{3}A_{1g}$	5.74	³ MLCT _{CO}
$2^{3}E_{g}$	6.17	³ MLCT _{CO}
$2^{3}T_{2g}$	6.26	³ MLCT _{CO}
$3^{3}T_{2g}$	6.34	³ MLCT _{CO}
$2^{3}T_{1g}^{-3}$	6.53	³ MLCT _{CO}
$3^{3}T_{1g}$	6.96	³ MC
$4^{3}T_{2g}$	7.08	³ MC
2^3A_{1g}	7.69	³ IL
$5^{3}T_{2g}$	7.72	³ IL
$4^{3}T_{1g}$	7.75	³ IL
$3^{3}E_{g}$	7.94	³ IL
$3^{3}T_{1u}$	7.97	³ IL
$4^{3}T_{1u}$	8.22	³ MLCT _{CO}
$3^{3}T_{2u}$	8.22	³ MLCT _{CO}
$2^{3}A_{2u}$	8.26	³ MLCT _{CO}
$3^{3}E_{u}$	8.27	³ MLCT _{CO}
$4^{3}E_{g}$	8.31	³ IL
6^3T_{2g}	8.60	³ IL
$2^{3}A_{2g}$	8.66	³ IL
$4^{3}E_{u}$	8.72	³ IL
$4^{3}T_{2u}$	8.74	³ MLCT _{CO}
3^3A_{1g}	8.75	³ IL
$3^{3}A_{2u}$	8.84	³ IL
$5^{3}E_{g}$	8.93	³ IL
$5^{3}T_{2u}$	8.94	³ IL
$5^{3}T_{1g}$	8.95	³ IL
$5^{3}T_{1u}$	9.00	³ IL
$7^{3}T_{2g}$	9.25	³ IL
$2^{3}A_{1u}$	9.26	³ IL
$6^{3}E_{g}$	9.41	³ IL
$5^{3}E_{u}$	9.45	³ IL

3^3A_{2g}	9.46	³ IL
$6^{3}T_{1g}$	9.51	^{3}IL
$6^{3}T_{1u}$	10.04	³ IL
$6^{3}T_{2u}$	10.06	^{3}IL
8^3T_{2g}	10.06	^{3}IL
$7^{3}T_{1g}$	10.07	^{3}IL
$8^{3}T_{1g}$	10.14	³ MC
$9^{3}T_{2g}$	10.20	³ MC
$7^{3}T_{1u}$	10.22	^{3}IL
$7^{3}T_{2u}$	10.43	^{3}IL
4^3A_{1g}	10.45	³ MLCT _{CO}
$6^{3}E_{u}$	10.48	^{3}IL
$10^{3}T_{2g}$	10.49	^{3}IL
$7^{3}E_{g}$	10.51	^{3}IL
$8^{3}T_{1u}$	10.51	³ IL