Supporting Information 1

for

Association of aescin with β - and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

Ana I. Ramos ${ }^{* 1,2}$, Pedro D. Vaz ${ }^{3,4}$, Susana S. Braga ${ }^{5}$ and Artur M. S. Silva ${ }^{5}$

Address: ${ }^{1}$ CICECO, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; ${ }^{2}$ Current affiliation: INEGI-FEUP Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ${ }^{3} \mathrm{CQB}$, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; ${ }^{4}$ ISIS Neutron \& Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom and ${ }^{5}$ QOPNA, Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

Email: Ana I. Ramos - shortinha.sa@gmail.com

* Corresponding author

Supplement to ${ }^{1} \mathbf{H}$ NMR studies in solution

a) Attemptive Job plot for the H 3 proton of $\gamma \mathrm{CD}$ in $\gamma \mathrm{CD} \cdot$ aescin mixtures

Figure S1.1: Job plot for the H3 proton of γ-CD in aqueous solutions containing γ-CD and aescin in a gradient of molar fraction. Note how the inconsistency in the proton shifts affords a negative value for the data point corresponding to the molar fraction of 0.9 (circled with red).

b) Apparent Inclusion Constants for $\beta \mathrm{CD} \cdot$ aescin and $\gamma \mathrm{CD} \cdot$ aescin

Figure S1.2: Graphical analysis of ${ }^{1} \mathrm{H}$ NMR shifts of the H 5 proton of β-CD of one assay comprising a series of aqueous solutions containing 0.25 mM of $\beta-\mathrm{CD}$ and $2.5,3.0,3.5,4.0$ and 4.5 mM of aescin. Data is fitted to a line with r^{2} value of 0.972 and x_{0} (yy-intercept) of 0.00151 , which allows estimating, for this data set, $K_{\text {app }}=1 / \mathrm{x}_{0}=662 \mathrm{M}^{-1}$ (the values presented in the manuscript are the average (\pm RSD) of different calculated $K_{\text {app }}$ values). The first data point was not used in the data fitting.

Figure S1.3: Graphical analysis of ${ }^{1} \mathrm{H}$ NMR shifts of the H 5 proton of γ-CD of one assay comprising a series of aqueous solutions containing 0.25 mM of γ-CD and 2.5, 3.0, 3.5, 4.0 and 4.5 mM of aescin. Data is fitted to a line with r^{2} value of 0.9834 and x_{0} (yy-intercept) of 0.00102 , which allows estimating $K_{\text {app }}=1 / \mathrm{x}_{0}=980 \mathrm{M}^{-1}$.

