Supporting Information

for

Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies

Xuefeng Wang*^{1,2}, Zhong Mei², Yanyan Wang² and Liang Tang*²

Address: ¹Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; and ²Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA

Email: Xuefeng Wang* - xuefengwang@ujs.edu.cn;

Liang Tang* - liang.tang@utsa.edu

* Corresponding author

Additional experimental data

Methods

Gel Electrophoresis

Anti-IgG, the different thiolated anti-IgG, and GNR-anti-IgG conjugates were mixed with 5× loading buffer (250 mM Tris-HCI, 500 mM DTT, 10% SDS, 0.5% bromophenol blue, and 50% glycerol). Twenty (20) microliters of samples from each well were loaded on a SDS-PAGE gel (4 % stacking and 10% separating gel). Electrophoresis was run at 1× SDS-PAGE buffer at 60 V for 1 h and 110 V for 1 h. Then, the lane was stained with Coomassie brilliant blue R-250, and destained with methanol and glacial acetic acid.

Figure S1: Gel electrophoresis and Coomassie brilliant blue staining of anti-IgG, thiolated anti-IgG (A), and nanoconjugates with GNRs (B) treated by Traut's reagent, DTT, PEG6-CONHNH2, and SH-PEG-NH₂ combined with EDC reaction.

Figure S2: TEM images before and after conguation of the thiolated anti-human IgG molecules onto gold nanorods of longitudinal SPR peaks at 728 nm.

Figure S3: Superior stability of the functionalized GNRs with thiolated anti-IgG using (A) Traut's reagent, (B) DTT, (C) PEG6-CONHNH2, and (D) SH-PEG-NH₂ combined with EDC reaction.

Figure S4: Quantification of the concentration of sulfhydryl groups attached to anti-IgG after different thiolation methods. (A) The standard curve was determined by known concentrations of cysteine containing sulfhydryl groups. (B) The sulfhydryl groups' concentration of anti-IgG after different thiolation methods.

Figure S5: Comparison of the sensing performance for human IgG detection using the GNR biochip prepared by Traut's, DTT, and PEG6-CONHNH2 thiolation.

Figure S6: Absorption spectra before and after probing non-target proteins, including rabbit IgG (A), myoglobin (B), and cardiac troponin I (C), by the functionalized GNR biochip with thiolated anti-IgG using Traut's reagent.

Figure S7: Absorption spectra before and after probing non-target proteins, including rabbit IgG (A), myoglobin (B), and cardiac troponin I (C), by the functionalized GNR biochip with thiolated anti-IgG using DTT.

Figure S8: Absorption spectra before and after probing non-target proteins, including rabbit IgG (A), myoglobin (B), and cardiac troponin I (C), by the functionalized GNR biochip with thiolated anti-IgG using PEG6-CONHNH2.

Figure S9: Absorption spectra before and after probing non-target proteins, including rabbit IgG (A), myoglobin (B), and cardiac troponin I (C), by the functionalized GNR biochip with thiolated anti-IgG using SH-PEG-NH₂ combined with EDC.

samples	Traut's				DTT				PEG6-CONHNH2				SH-PEG-NH ₂ /EDC			
(LSPR	@728nm		@930nm		@728nm		@930nm		@728nm		@930nm		@728nm		@930nm	
peaks)	GNRs	GNRs+	GNRs	GNRs+	GNRs	GNRs+	GNRs	GNRs+	GNRs	GNRs+	GNRs	GNRs+	GNRs	GNRs+	GNRs	GNRs+
		Anti-IgG		Anti-IgG		Anti-IgG		Anti-IgG		Anti-IgG		Anti-IgG		Anti-IgG		Anti-IgG
zeta	25.1 ±	11.4 ±	19.3 ±	−3.2 ±	16.9 ±	10.2 ±	15.6 ±	−2.9 ±	15.6 ±	10.2 ±	16.8 ±	−2.9 ±	12.1 ±	−0.8 ±	15.2 ±	-0.6±
potential	5.8	0.5	2.8	0.1	6.6	0.5	1.1	0.3	5.8	0.2	3.3	0.1	2.7	0.1	0.6	0.3
(mM)																

Table S1: Zeta potential of GNRs before and after functionalization with thiolated anti-IgG.