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Additional Green’s Function Calculations 

 

In this section, we calculate the Green’s function for the rough surface to be inserted in Eq. (11). 

Such rough Green’s function is given by two main contributions, one is the so-called coherent 

term and the other one is the fluctuating contribution entirely accounting the roughness surface 

contribution. The Green’s function, G, for a given point source located at r=r0 must satisfy the 

equation: 
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The rough surface is described by a surface profile z=h(x,y) which is a random function of the 

surface height. If we consider the value r0=<h(x,y)>=0, the boundary conditions provide 

G(r,r0)=0 for z=r0. This constrain can be used to expand the Green’s function about the surface 

height z. Let us consider a one-dimensional case for the surface height, the extension to a bi-

dimensional case is immediate, hence the Green’s function expanded on z can be written as: 
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Keeping the first-order in h in Eq.(S2) and neglecting the higher-order powers of h, and hence 

making use of the Green’s theorem , we approach to the following expression  
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It should be noted that G(r,r0=0) becomes zero as r approaches to r0, but this is not true inside the 

integral because the derivative of the same function. The arrows on the derivatives denotes the 



S3 
 

direction in which the derivation is operated. At this point, we can calculate the coherent Green’s 

function, that is the evaluation of the Green’s function <G(r,r0)>. Following Ishimaru et al., we 

apply the Dyson’s equation in the condition of the so-called smoothing first-order approximation 

to obtain [42]: 
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The solution of Eq.(S4) requires the introduction of the spatial Fourier transform described, for 

the Green’s function and spatial correlation, respectively, by ( ) ( ) ( ) κκ
π
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−∫Φ= , where Φ(κ) is the spectral density. Note that κ denotes the 

spatial wavevector. Using the expressions for the Fourier transform and spatial correlation in Eq. 

(S4), we obtain 
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Now, we introduce a reflection coefficient connected to spectral density and plasmon wavevector 

via the function ( ) ( ) κκκκ ′′−Φ=Θ ∫ dkk ~~
, where 22~ κ−= kk , 
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It should be noted that for Θ(κ)=−1, the reflection coefficient has a pole. For this pole the rough 

surface gives a relevant contribution to field enhancement. Finally, adopting the spatial Fourier 

transform representation for G0 and coherent the Green’s functions written as  
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and taking in mind that ( ) ( )( ) ( )( )κκκ
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Hankel function of first kind and order zero, after some simple algebraic calculations and 

invoking residue evaluation of reflection coefficient poles, we achieve to Eq. (9) for the coherent 

case and Eq. (12) for the fluctuating one.  

 


