Search results

Search for "4H-SiC" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • enhancement of the optical emission between 850 and 1400 nm of an ensemble of silicon mono-vacancies (VSi), silicon and carbon divacancies (VCVSi), and nitrogen vacancies (NCVSi) in an n-type 4H-SiC array of micropillars. The micropillars have a length of ca. 4.5 μm and a diameter of ca. 740 nm, and were
  • ), which have different materials properties. The most extensively studied point defects for the quantum technologies described above, specifically for the spin–photon interface, appear in hexagonal 4H-SiC, namely the silicon monovacancy and the silicon and carbon divacancy (VSi, VSiVC) [27]. The VSi
  • 4H-SiC. The intensity of the largest PL from a single defect at saturation is 10 kcts/s [8] without a solid immersion lens using an a-Si detector with 20–30% quantum efficiency and 40 kcts/s with a solid immersion lens [4]. The DWF is 40%, the ZFS is 70 MHz for V2 and 4 MHz for V1 at the ground state
PDF
Album
Full Research Paper
Published 05 Dec 2019

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality
  • control the thickness uniformity and the barrier-height distribution, which depends on the thickness. Hence, it is very important to grow homogenous epitaxial graphene monolayers and to minimize the appearance of extended defects. Here we report on the fabrication of epitaxial graphene/Si-face-4H-SiC
  • The top-down sublimation growth process in an inductively heated furnace at 2000 °C under an argon pressure of 1 atm [50] was used to synthesize the 1 ML epitaxial graphene on n-type (nitrogen-doped) 4H-SiC (0001) substrates. A study of the grown samples by reflectance mapping and Raman
PDF
Album
Full Research Paper
Published 22 Nov 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • effective density of states in the conduction (NC = 3.25 × 1015·T3/2 = 1.69 × 1019 cm−3) and valence band (NV = 4.8 × 1015·T3/2 = 2.49 × 1019 cm−3) [46]. This leads to Vb = 3.0 eV, which is a reasonable value taking into account the band gap of 4H-SiC. With a theoretically determined electron affinity of χ
  • transition between strong and no Fermi-level pinning which could also be tuned by passivation of the surface states with, e.g., hydrogen [55]. Furthermore, a large density of electrically active defects just below the conduction band of the polytype 4H-SiC has been reported to appear at interfaces and maybe
PDF
Album
Full Research Paper
Published 28 Dec 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • bi-layer graphene (BLG) grown epitaxially on 6H- or 4H-SiC(0001) show a characteristic 6× 6 quasi-periodic corrugation (q-6 hereafter) [3][13][14][15]. It has not been clarified yet whether STM contrast on this surface has electronic or topographic origin. There is a lack of knowledge about the real
PDF
Album
Full Research Paper
Published 07 Apr 2015

A look underneath the SiO2/4H-SiC interface after N2O thermal treatments

  • Patrick Fiorenza,
  • Filippo Giannazzo,
  • Lukas K. Swanson,
  • Alessia Frazzetto,
  • Simona Lorenti,
  • Mario S. Alessandrino and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2013, 4, 249–254, doi:10.3762/bjnano.4.26

Graphical Abstract
  • di Catania - Università degli Studi di Catania, Via Valdisavoia 9, 95123, Catania, Italy STMicroelectronics, Stadale Primosole 50, 95121, Catania, Italy 10.3762/bjnano.4.26 Abstract The electrical compensation effect of the nitrogen incorporation at the SiO2/4H-SiC (p-type) interface after thermal
  • treatments in ambient N2O is investigated employing both scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). SSRM measurements on p-type 4H-SiC areas selectively exposed to N2O at 1150 °C showed an increased resistance compared to the unexposed ones; this indicates the
  • incorporation of electrically active nitrogen-related donors, which compensate the p-type doping in the SiC surface region. Cross-sectional SCM measurements on SiO2/4H-SiC metal/oxide/semiconductor (MOS) devices highlighted different active carrier concentration profiles in the first 10 nm underneath the
PDF
Album
Full Research Paper
Published 08 Apr 2013
Other Beilstein-Institut Open Science Activities