Search results

Search for "AOPs" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • treatment technologies, advanced oxidation processes (AOPs) are regarded as a practical, efficient, and fiercely competitive technology for water treatment for the removal of a variety of toxic and bio-recalcitrant organic pollutants and for the inactivation of pathogen microorganisms that cannot be treated
  • by conventional methods [11][12][13][14]. For the oxidation of organic molecules, AOPs rely on the in situ generation of potent oxidants (reactive oxygen species, ROS) such as hydroxyl or sulfate radicals. AOPs have been broadly categorised in terms of how ROS are produced, including non
  • -photochemical techniques, such as chemical, radiation-induced, cavitation, electrochemical techniques, and photochemical processes [11][15][16][17]. One of the AOPs, photocatalysis, uses natural light – a resource that is both clean and recyclable – to completely degrade a variety of organic pollutants and
PDF
Album
Review
Published 03 Mar 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • regulations to them [8]. Consequently, there is a growing need to develop processes for removing BPs from wastewater. In recent decades, much attention has been paid to advanced oxidation processes (AOPs) in the research and development of wastewater treatment technologies [7][9]. Processes such as cavitation
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • degradation, antibiotic treatment, and sterilization [38]. The term “advanced oxidation processes” has become more common recently. In this process, many oxidizing agents (∙OH) are created. Electron–hole pairs are formed in AOPs when the VB electrons of semiconductor photocatalysts are driven into the
PDF
Album
Review
Published 11 Nov 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • pollutants, such as adsorption, coagulation, filtration, and chemical and biochemical oxidation [10][11]. Advanced oxidation processes (AOPs) have recently attracted attention due to their simple operation, low cost, and potentially high effectiveness. AOPs are the technologies that use various chemical
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Investigation of the photocatalytic efficiency of tantalum alkoxy carboxylate-derived Ta2O5 nanoparticles in rhodamine B removal

  • Subia Ambreen,
  • Mohammad Danish,
  • Narendra D. Pandey and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2017, 8, 604–613, doi:10.3762/bjnano.8.65

Graphical Abstract
  • removal, sedimentation and filtration are not very effective in removing organic dyes. Advanced oxidation processes (AOPs) receive a lot of interest in this regard, and photocatalysis by semiconductors is the most extensively investigated AOP. Metal oxide nanoparticles (NPs), for example TiO2, ZnO, SnO2
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2017

Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

  • Hoai Nga Le,
  • Frank Babick,
  • Klaus Kühn,
  • Minh Tan Nguyen,
  • Michael Stintz and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2015, 6, 2423–2430, doi:10.3762/bjnano.6.250

Graphical Abstract
  • significant obscuration. Keywords: AOPs; reaction rate constant; turbidity; ultrasonic energy; wastewater treatment; Introduction Advanced oxidation processes (AOPs) form a group of modern chemical technologies that rely on the generation of radical species and are considered to have high prospects for the
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2015

Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

  • Carolina Gil-Lozano,
  • Elisabeth Losa-Adams,
  • Alfonso F.-Dávila and
  • Luis Gago-Duport

Beilstein J. Nanotechnol. 2014, 5, 855–864, doi:10.3762/bjnano.5.97

Graphical Abstract
  • growing interest in nanomaterials for green environmental remediation. For example, catalytically active synthetic nanoparticles inspired by natural minerals have been combined with in situ advanced oxidation processes (AOPs) as a potential strategy to remediate contaminants [1][2][3]. These AOPs generate
PDF
Album
Full Research Paper
Published 16 Jun 2014
Other Beilstein-Institut Open Science Activities