Search results

Search for "DFM" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • based on a combination of STM and dynamic force microscopy (DFM) imaging and spectroscopy. DFM experiments, also known as non-contact AFM (NC-AFM), are carried out using a quartz tuning fork sensor in the qPlus geometry [16][17] to which a tip has been glued. Shifts in the resonant frequency of a tine
  • and tip–sample force maps in parallel, but there are important instrumental artefacts [19][20] and physical effects [21] that can produce crosstalk between the measurement channels and these need to be carefully considered. With this proviso in mind, the DFM-STM combination can be exploited to
  • correlate, in parallel, the dependence of the tunnel current and the tip–sample force on the displacement of the probe. Our combined STM-DFM measurements clearly show that STM imaging of low conductivity supracrystals involves a contact conduction mechanism, and not the through-vacuum tunnelling that is
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • extrapolation method. Keywords: background subtraction; DFM; F(z); force; atomic resolution; NC-AFM; Si(111); STM; van der Waals; Introduction Non-contact atomic force microscopy (NC-AFM) is now the tool of choice for surface scientists wishing to investigate interatomic and intermolecular forces on surfaces
PDF
Album
Full Research Paper
Published 01 Apr 2014

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • (SFM) in a dynamic force microscopy (DFM) mode employing a sharp diamondlike carbon (DLC) tip with a radius of curvature of 1 nm. Figure 13a shows a height image of one sample with Mn = 32700 and Mn/Mw = 1.33. Discrete nanostructures were randomly distributed on the mica surface and no aggregation was
  • to P3HT and was ascribed to a larger amount of the P3HT/HT3P-imogolite aggregate. Upon hybridization, HT3P-imogolite greatly restricts the rotational motion of the P3HT backbone, such that it produces a much longer conjugation length than pure P3HT. Dynamic force microscopy (DFM) has proved to be a
  • powerful tool for the direct observation of the aggregation of polymeric nanofibers. By spin coating a dilute solution in anisole, a network of nanofibers more or less entirely covers the silicon substrate. The dimensions of the nanofiber were determined from DFM images; as shown in Figure 23a, P3HT
PDF
Album
Review
Published 02 Feb 2012

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • atomic force microscopy (FM-AFM) or dynamic force microscopy (DFM). For the stability of tip and sample as well as for the reduction of piezo creep, piezo hysteresis, thermal drift and noise level, the setup was operated in ultrahigh vacuum (UHV) at low temperature (5 K). The resulting high stability
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities