Search results

Search for "Raman" in Full Text gives 434 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • for various novel applications where arrays of metal nanostructures are used, such as surface-enhanced Raman spectroscopy substrates [36][37][38]. In this work, we deposited Ag NWs on specially patterned silicon (Si) substrates, so large fractions of NWs are partially suspended over the holes. Samples
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • Ag NPs-DES sample is used in a surface-enhanced Raman scattering (SERS) sensor. The two analytes for SERS quantitation are nitrofurantoin (NFT) and sulfadiazine (SDZ) whose residues can be traced down to 10−8 M. The highest enhancement factors (EFs) are competitive at 6.29 × 107 and 1.69 × 107 for
  • synthesis of nanomaterials for biosensor substrate construction. Keywords: Ag NPs; antibiotic residue; deep eutectic solvents; potential; SERS; Introduction Surface-enhanced Raman scattering (SERS) is a ubiquitous technology for detecting and tracing substances, applied in various kinds of sensors. The
  • able to withstand the conditions of storage but also exhibits consistent Raman signals over the surface of the coating. Drops of 10−6 M NFT were placed on six different spots of the Ag NPs-DES substrate (Figure 5A). Then, the SERS spectra were analyzed by considering the variation of peak intensity of
PDF
Album
Full Research Paper
Published 16 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • reduction in infarction size, TNF-α levels, cardiac fibrosis, and improvement in cardiac systolic function. Gold nanorods serving as surface-enhanced Raman scattering probes have demonstrated sensitivity for the early detection of ICAM-1, a significant signal for screening atherosclerosis, particularly in
PDF
Album
Review
Published 12 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • applied strain on NCG placed on polyethylene terephthalate (PET) substrates provide intriguing insights into the underlying mechanism. Raman measurements, in conjunction with strain applied to NCG grown on flexible glass, indicate that the strain is concentrated at the grain boundaries for smaller strain
  • values. For larger strains, mechanisms such as grain rotation and the formation of nanocracks might contribute to the piezoresistive behavior in nanocrystalline graphene. Keywords: grain boundary; nanocrystalline graphene; strain sensor; Raman; tunneling and destruction; Introduction Flexible strain
  • , which was constructed in-house and automated using Python. Then, sheet resistance measurements under externally applied strain are discussed. Raman spectroscopy of the NCG under strain is studied, which gives insights into the distribution of strain in the film. Utilizing electrical and optical
PDF
Album
Full Research Paper
Published 08 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • Raman spectroscopy is a widely used technique to characterize nanomaterials because of its convenience, non-destructiveness, and sensitivity to materials change. The primary purpose of this work is to determine via Raman spectroscopy the average thickness of MoS2 thin films synthesized by direct liquid
  • first reassess the applicability of different Raman criteria to determine the thicknesses (or layer number, N) of MoS2 flakes from measurements performed on reference samples, namely well-characterized mechanically exfoliated or standard chemical vapor deposition MoS2 large flakes deposited on 90 ± 6 nm
  • modes is proposed to evaluate the surface coverage for each N (i.e., the ratio between the surface covered by exactly N layers and the total surface) in DLI-PP-CVD MoS2 samples. Keywords: molybdenum disulfide; number of layers; Raman spectroscopy; thin film; transition metal dichalcogenides
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • substrate, which contains a low amount of defects as described elsewhere [27]. In the first part of the present contribution, we demonstrate how the beam parameters and the dose affect the etched profiles and consequently the lateral resolution of water-assisted FEBIE of graphene. The Raman analysis
  • 50 nm (20 nm in the best case). However, due to the long residual time of the water molecules inside the SEM chamber, the collection of an image can further destroy the investigated material. Therefore, we performed a second series of experiments for a detailed analysis with Raman spectroscopy and
  • estimated beam size equal to 10 nm (FWHM), are summarized in Table 1. The results of Raman spectroscopy measurements are shown in Figure 2C and Figure 2D. This technique is not only sensitive to the number of graphitic layers in graphene but, more importantly, also to the number of defects, which can be
PDF
Album
Full Research Paper
Published 07 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • relations of refractive indices and extinction coefficient were investigated. The morphologies of the thin films were studied with atomic force microscopy. The chemical boundaries of the ternary layers were determined by Raman spectroscopy. Based on UPS studies, the energy diagram of the potential devices
  • monocrystalline silicon. A WITec Alpha 300 M+ spectrometer with a 488 nm laser, 600 groove grating, and a 100× ZEISS objective was used for Raman measurements. The samples were deposited on a glass substrate. Ultraviolet photoelectron spectroscopy (UPS) was conducted in an ultrahigh-vacuum chamber with a base
  • results due to dot doping align with the results presented in the work of Cha et al. [46], Lewińska et al. [47], and Ohring [48]. By design, quantum dots are supposed to play a different role as transport enhancers with their properties. Raman spectroscopy Raman measurements for P3HT and PCBM were
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • concentration of the BBR molecule on the surface of BBR NPs/PLA nanofibers. The observation of Figure 1c further supports this assumption. The analysis of Raman spectra (Figure 3A) was employed to confirm chemical characteristics of PLA, BBR/PLA, and BBR NPs/PLA nanofiber scaffolds. The distinct peaks of the
  • ImageJ software as an image analysis tool. Fourier-transform infrared spectroscopy was performed in a Nicolet NEXUS 670 spectrometer. The resulting spectra were recorded in transmission mode in the wavelength range of 500–4000 cm−1. A Raman spectrometer (MacroRAM, Horiba) was used to investigate the
  • nanofiber scaffolds at different wavenumber ranges (A, B, C). (A) Raman spectra of (a) PLA, (b) BBR/PLA, and (c) BBR NPs/PLA nanofiber scaffolds and (B) XRD patterns of (a) PLA, (b) BBR/PLA, and (c) BBR NPs/PLA nanofiber scaffolds and (d) PLA pellet. In vitro BBR release profiles of (a) BBR/PLA and (b) BBR
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • . Thus, the Raman spectroscopy of graphene nanoplatelets which yield optimal enhancement in required compressor electrical power are presented in Figure 15. Figure 15 shows that the graphene used in this study has characteristic G (1564 cm−1) and 2D (2680 cm−1) bands. A low intensity D band (1343 cm−1
  • compressor electrical power for the usage of nanolubricants with a) Al2O3, b) graphene, and c) CNTs. Required compressor electrical power for nanolubricants with optimum mass fraction of nanoparticles. Raman spectroscopy of the graphene nanoplatelets. XPS of the graphene nanoplatelets. Kinematic viscosity of
PDF
Album
Full Research Paper
Published 02 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. However, even with these modifications, it relied on the colorimetric principle and was not applicable for the quantitative determination of analytes. In recent years, to address these challenges, various signal amplification strategies, such as DNA amplification, nanozyme activity, surface-enhanced Raman
  • reduced graphene oxide (rGO), SERS imaging can be done along with photothermal therapy [84]. Recently, our group developed a multifunctional rGO–Au nanoscale architecture loaded with Raman dye and anticancer drugs for fluorescence/SERS imaging-guided breast cancer therapy. Under activation of a laser at
  • . developed a multifunctional Au@Pt@Ag nanocomposite loaded with the Raman dye 5,5′-dithiobis-(2-nitrobenzoic acid) for the sensitive and quantitative detection of dehydroepiandrosterone (DHEA) through LFA. The developed nanocomposite combined colour signal, SERS, and photothermal properties, providing a
PDF
Album
Review
Published 04 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • nanoparticles with a defective zinc blende structure under mild conditions through thermal annealing of hydrogenated silicon nanoparticles with red phosphorus. The synthesized Si3P4 nanoparticles were analyzed using FTIR, XRD, electron diffraction, EDX, TEM, Raman spectroscopy, X-ray fluorescence spectrometry
  • expected to conform to the elemental composition Si3P4. The emergence of an additional diffraction maximum for the sample SP900 was likely due to partial degradation of the compound. Signs of decomposition could be seen in the diffraction pattern of sample SP670 as well, albeit to a lesser extent. Raman
  • spectra of the samples SP550, SP670, and SP900 are shown in Figure 3 (SP400 exhibited photoluminescence of an organic origin that hindered Raman studies). The spectra consist of multiple bands that provide a stark contrast to the zinc blende SiP structure, which exhibits a singular Raman mode (with a LO
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • attachment of NHCs to gold and the properties of the corresponding monolayers have been studied using conventional surface science techniques under ultrahigh-vacuum conditions [13][14]. NHC monolayers have also been used in applications such as surface-enhanced Raman spectroscopy and surface plasmon
  • using the EDS software AZtec from Oxford Instruments (Concord, MA, USA). Gold nanoparticles were synthesized following a modified Fren’s method [33]. Raman spectra were collected using a Snowy Range Instruments Sierra 2.0 spectrometer with laser excitation at 785 nm at a laser power of 74.1 mW and an
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • detection of harmful chemicals in the environment and for food safety is a crucial requirement. While traditional techniques such as GC–MS and HPLC provide high sensitivity, they are expensive, time-consuming, and require skilled labor. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical
  • assembled into a monolayer on a liquid/air interface and deposited onto a porous silicon array prepared through a metal-assisted chemical etching approach. By using the developed microfluidic device, enhancement factors of the Raman signal for rhodamine B (at 10−9 M) and melamine (at 10−7 M) of 8.59 × 106
  • the potential to be a valuable analytical tool for monitoring environmental contaminants. Keywords: 3D printing; microfluidic droplet; SERS substrate; silver nanoparticle; smartphone detection; Introduction Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful optical trace detection
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • stretching motions of C=O and C=C groups. The remaining band are stretching vibrations of alkoxy C–O or aromatic bonds [39]. Further analysis of the structure of pure Ge, biomass-derived carbon, and chemical contact between Ge and carbon matrix in the composites was conducted using Raman spectra. As shown in
  • Figure 1c, the Raman spectrum of pure Ge exhibits a signal at 83 cm−1, attributed to the transverse acoustic phonon mode, and two peaks at 127 and 169 cm−1 ascribed, respectively, to the longitudinal acoustic and longitudinal optic phonon modes of Ge–Ge bonds [40][41]. The sharp peak at 296 cm−1 and a
  • low-intensity band around 550 cm−1 are assigned to the first-order and second-order transverse optic phonon modes of crystalline Ge [41][42][43]. Moreover, the broadband detected at 449 cm−1 corresponds to the customary Raman-active motion of α-GeO2 [44]. The presence of characteristic signals in the
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • morphology of the MWCNTs similar to that of MWCNTs obtained from CVD. Raman spectroscopy showed constant IG/ID ratios after all runs, and thermogravimetric analysis (TGA) results showed almost equal CNT oxidation temperatures, indicating similar purity. The constant crystallinity determined from the ID/IG
  • Raman spectra of the CNTs grown in diffusion flame and premixed flame at the highest and the lowest HAB values. Generally, the formation of sp2-hybrdized carbon atoms is often correlated to Raman spectra having G peaks at 1550–1600 cm−1. Similarly, a D peak around 1250–1450 cm−1 often correlates to
  • by field-emission scanning electron microscopy (FESEM, Zeiss Crossbeam 340) coupled with energy-dispersive X-ray analysis (EDX) for morphology and elemental analysis. Raman spectroscopy (HORIBA XploRA PLUS, 532 nm) was done to analyze the signature spectra of the grown CNTs. Line-of-sight images of
PDF
Album
Full Research Paper
Published 21 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV–visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray
  • obtained, which will be used as an electrochemical nanosensor in further studies for malathion detection (Figure 1). Characterization FTIR, Raman, UV–vis, and fluorescence spectroscopy measurements were carried out to determine the optical properties of GQDs. A Perkin Elmer LAMBDA 750 spectrophotometer was
  • room temperature, an AIRIX STR 500 laser Raman spectrometer was used with Ar laser excitation at 532 nm. A Panalytical X-Pert Pro diffractometer with Cu Kα radiation (λ = 1.5418 Å) was used for investigating the structural properties of GQDs. Morphology and size of GQDs were confirmed with data
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • (ELISA), radioimmunoassay (RIA), surface-enhanced Raman spectroscopy (SERS), and capillary electrophoresis are common analytical techniques used to qualitatively or quantitatively determine pharmaceuticals in various matrices because they are sensitive (Figure 2), have a significant tolerable limit of
  • ). Biorecognition elements and signal transducers (chemiluminescence, interferometry, surface plasmon resonance, luminescence, colourimetry, or surface-enhanced Raman spectroscopy), are the key components of an optical sensor. Analyte concentration, existence, and other relevant physical attributes are determined
PDF
Album
Review
Published 01 Jun 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • substrates using pulsed laser deposition (PLD) and magnetron sputtering (MS) and their evaluation as potential substrates for surface-enhanced Raman spectroscopy (SERS) are reported. Ag layers of comparable thicknesses were deposited using PLD and MS on nanostructured GaN platforms. All fabricated SERS
  • : GaN/Ag; magnetron sputtering; nanofabrication; pulsed laser deposition; SERS substrates; surface-enhanced Raman spectroscopy (SERS); Introduction Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and specific technique with multiplexing capabilities [1][2][3][4]. It is considered for
  • , the given thickness values correspond to the amount of deposited silver rather than the actual Ag layer thicknesses on GaN platforms. It is important to mention that when the Ag layer is too thin, the Raman peaks originating from the GaN platform may be visible in the SERS spectrum. From the point of
PDF
Album
Full Research Paper
Published 03 May 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • .14.42 Abstract Raman spectroscopy is one of the most common methods to characterize graphene-related 2D materials, providing information on a wide range of physical and chemical properties. Because of typical sample inhomogeneity, Raman spectra are acquired from several locations across a sample, and
  • , although quantification of the amount remains approximate. We therefore recommend this approach as a robust methodology for reliable characterization of mass-produced graphene-related 2D materials using confocal Raman spectroscopy. Keywords: few-layer graphene; graphene; metrology; quality control; Raman
  • validated against those methods. What is more important is repeatability and reproducibility, to allow for product monitoring over time. They also need to be able to provide results quickly, in a form that is easy to interpret, providing simple pass/fail outcomes. Raman spectroscopy is one of the most
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • structure. The pigments are obtained via the addition of coloring ions to boehmite from recycled metallic aluminium. X-ray diffractometry (XRD) and Raman spectroscopy confirmed the crystallographic phase. Additionally, the oxidation state 3+ responsible for the greenish (chromium) and reddish (iron
  • from 57.3% (alumina) to 63.9% (sample 2) (Table 1). The crystallinity of the synthesized oxides is superior to the ones obtained via coprecipitation [1]. Raman spectroscopy The Raman spectrum observed for sample 1 (Figure 2a) is characteristic of chromium oxide (Cr2O3), in agreement with what was
  • observed by XRD. The spectrum is composed of four E1g vibrational modes (ca. 242 cm−1, ca. 413 cm−1, ca. 525 cm−1, and ca. 605 cm−1), as previously reported [19]. The Raman spectrum of sample 2 (Figure 2b) presents the seven optical symmetry modes expected for hematite (α-Fe2O3) in agreement with the XRD
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • , morphology, and chemical composition of the fabricated catalysts were investigated using TEM, SEM, EDX, XPS, and Raman spectroscopy. Electrochemical measurements determined the performance of the fabricated catalysts. Results and Discussion Synthesis of a highly graphitized carbon material The synthesis of
  • consists of carbon particles with a mean diameter below 0.5 μm that form loosely arranged structures (Figure 1). The comparison of Raman spectra of the synthesized carbon material C-11 and the commercial carbon support Vulcan XC-72R is shown in Figure 1. The differences in the crystalline structure of
  • vibration with an experimentally selected frequency and amplitude. Structure, morphology, and chemical composition The carbon material quality was evaluated based on Raman spectra. Raman measurements were performed using a commercial Renishaw InVia Reflex Raman microscope equipped with an EMCCD (1600 × 200
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • fundamental physical phenomena at the nano- and mesoscales [9][10][11][12][13][14][15], as well as more practical applications in Raman spectroscopy in the form of surface-enhanced Raman spectroscopy (SERS) [16] and other spectroscopic techniques [17][18]. SPPs also find uses in fields such as ultrasensitive
PDF
Album
Full Research Paper
Published 16 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Nanostructured noble metal thin films are highly studied for their interesting plasmonic properties. The latter can be effectively used for the detection of small and highly diluted molecules by the surface-enhanced Raman scattering (SERS) effect. Regardless of impressive detection limits achieved, synthesis
  • cost-efficient methods. Compared to in-lab standard methods used for pollutant analysis (i.e., chromatography and mass spectrometry), surface-enhanced Raman scattering (SERS)-based sensors have emerged as important candidates due to their rapidity, portability, and cost-effectiveness [1][2]. These SERS
  • the SERS detection properties. To reach this objective, Raman spectra of the RhB diluted at 10−7 mol·L−1 were recorded on the samples after different dealloying times and for the three selected initial Ag contents. No Raman signal was detected for the Ag–Al thin film before dealloying since the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • MWCNTs and TiO2@MWCNTs, which could result from the catalyzed synthesis of MWCNTs [14]. Raman spectroscopy is applied for phase characterization of MWCNTs and TiO2@MWCNTS, as shown in Figure 5. The peaks at 178, 424, and 609 cm−1 are characteristic of the TiO2 phase in the TiO2@MWCNTs catalyst [21]. In
  • the Raman spectrum of MWCNTs, there are two bands, that is, the D band at 1324 cm−1 and the G band at 1585 cm−1, which are ascribed to the defect structure and the ordered graphitic structure of the MWCNTs, respectively. The ratio between the D band and G band intensities (ID/IG) of the TiO2@MWCNTs
  • MWCNTs and TiO2@MWCNTs. Raman spectra of MWCNTs and TiO2@MWCNTs. FTIR spectra of (a) MWCNTs, TiO2, and TiO2@MWCNTs, and (b) UV–vis DRS of TiO2 and TiO2@MWCNTs (Inset: Tauc plots). XRD patterns of MWCNTs, TiO2 and TiO2@MWCNTs nanocomposite. (a) Cyclic voltammograms in 0.1 M KCl at 50 mV/s of scan rate, (b
PDF
Album
Full Research Paper
Published 14 Dec 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • inclusion of the drug into CD cavities. Although we observed a red shift of the plasmonic band in UV–vis spectra (Figure 4B), the grafting of Pent to the silver surface was excluded by Raman analyses (Supporting Information File 1, Figure S1). Overall, these data suggested privileged interactions of Pent
  • at rt ≈ 25 °C. The chemical shifts are expressed in ppm using acetone as an internal standard. NMR analyses and Raman analysis (Supporting Information File 1, Figure S1) were carried out according to previously reported protocols [14][30]. Preparation of PolyCD Au NPs and PolyCD Au@Ag BMNPs NanoG and
  • (Nanobiophotonics and Laser Microspectroscopy Center, Cluj-Napoca, Romania) for the Raman Analysis. Funding This work was partially supported by PON03PE_00216_1 (Drug Delivery: Veicoli per un'innovazione Sostenibile). The authors thank for financial support CYCLONET ACRI (Associazione Casse di Risparmio Italiane
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022
Other Beilstein-Institut Open Science Activities