Search results

Search for "battery" in Full Text gives 107 result(s) in Beilstein Journal of Nanotechnology.

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • /diethyl carbonate (1:1:1, v/v) with 5% of fluoroethylene carbonate (by mass) was used as separator. Galvanostatic cycling with potential limitation (GCPL) was performed on a LAND battery testing system CT-2001A in a potential window of 0.1–3.0 V vs Li/Li+ at specific currents of 100 mA·g−1 for the initial
PDF
Album
Full Research Paper
Published 26 Jun 2023

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • the annealing temperature causes a steady decrease in the DC conductivity. Keywords: lithium cobalt oxide; lithium-ion battery; nanocrystalline powder; solution combustion synthesis; Introduction Lithium cobalt oxide (LiCoO2, LCO) of hexagonal structure () was first used as cathode material in
  • ]. One of the main advantages of the cobalt-based battery is its high theoretical capacity of 274 mAh·g−1, the high working potential of 4.0 V vs Li/Li+, and the high energy density of approximately 500 Wh·kg−1 [5][6][7][8][9]. The complete removal of lithium ions from the LiCoO2 structure is prevented
PDF
Album
Full Research Paper
Published 07 Dec 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • likely be critical in bioelectronic applications or battery research. Zhang et al. [51] developed qualified colloidal gold probes labeled with monoclonal antibodies to hepatitis B surface antigen (HBsAg Mab), and l5 nm colloidal gold was prepared by using the trisodium citrate reduction method; the
PDF
Album
Review
Published 03 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • . Copyright © 2021 WILEY-VCH GmbH. This content is not subject to CC BY 4.0. (a) MEGs power directly a blue LED. (b) MEGs charge a battery. Figure 10a,b were reproduced from [55] (“Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators“, © 2022
PDF
Album
Review
Published 25 Oct 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • for lowering the overpotential of the cathode during cycling, even at the high current density of 2,000 mA·g−1. Keywords: cathode composition; electrochemistry; Li–O2 battery; metal–organic framework; nanoarchitectonics; zeolitic imidazolate framework; Introduction Recently, lithium–oxygen batteries
  • chamber. Galvanostatic discharge profiles were measured at a current density of 50 mA·g−1 (based on the cathode mass) by means of a battery tester (WonATech, WBCS3000S). For rate-capability tests, the cell was discharged at various current densities in the range of 50–2000 mA·g−1. After discharge, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • for monitoring body movements in the market are battery-based. The battery needs to be worn all the time. Also, it needs to be charged or replaced, which makes its application impractical. In this work, we present a proof of concept for using a nanofibrous-based piezoelectric sensor composed of PVDF
  • , which is capable of monitoring body angles. This sensor will be able to replace the battery being used in commonly available products and is more breathable, lightweight, and flexible. The developed sensor has been characterized through advanced techniques. The current density has been calculated and
PDF
Album
Full Research Paper
Published 07 Feb 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • . Keywords: chemical vapor deposition; chromium germanide; nanostructured materials; nanowire; resistivity; Introduction Metal silicides and germanides belong to an extensively studied group of materials offering a wide variety of properties to meet various requirements in battery, optical, and electronic
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • of a sample [6] and observe subsurface features in some biological and electronics samples [7][8][9][10][11][12]. PFM can measure piezoelectric and ferroelectric properties of a sample [13][14][15][16]. ESM can measure the ion diffusion in battery materials [4][17][18][19]. These different AFM
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • electrospinning method. The influence of the carbonisation temperature on the graphitisation process and the particle morphology of fibres and cobalt-species was investigated. The fibre mats were applied as free-standing air electrodes in aqueous alkaline metal–air battery half-cells and investigated with respect
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • systems, but the current lithium-ion battery technology may face limitations in the future concerning the availability of raw materials and socio-economic insecurities. Sodium–sulfur (Na–S) batteries are a promising alternative energy storage device for small- to large-scale applications driven by more
  • commercially available for room-temperature applications [10]. The first commercialized Na–S battery was a high-temperature sodium–sulfur battery, which has an operational temperature in the range of 270–350 °C [13]. It was launched to the market by NGK Insulator Co. in Japan in 2002. However, these devices
  • -efficiency RT Na–S batteries (vide infra). The electrochemical mechanism of RT Na–S batteries is based on the release of sodium cations from the anode leading to the transfer of two electrons that reduce sulfur on the cathode side (Figure 1A) [4]. The redox reactions of the battery are as follows (the
PDF
Album
Review
Published 09 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • and smartphone-based sensing applications [3][4][5]. Several other advanced sensing applications have emerged, such as battery-free and wireless devices, providing on-site results [6][7]. NIR absorption is exclusively exhibited by plasmonic anisotropic nanoparticles, enabling diagnostic imaging within
PDF
Album
Review
Published 18 Aug 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • for the design of sterilization and algae removal [72], wastewater treatment [73][74], and electrochemical corrosion protection of metal surfaces and battery cathodes [56][75][76]. TENG-based special flexible pressure sensors can be placed on the surface of human skin to monitor the physiological
PDF
Album
Review
Published 08 Jul 2021

Simulation of gas sensing with a triboelectric nanogenerator

  • Kaiqin Zhao,
  • Hua Gan,
  • Huan Li,
  • Ziyu Liu and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2021, 12, 507–516, doi:10.3762/bjnano.12.41

Graphical Abstract
  • portable electronic devices [6][7]. The power supply is an important part of modern electronic equipment. A traditional battery has the disadvantages of short work life and heavy pollution. Therefore, it is extremely urgent to find a green and sustainable power supply for microelectronic devices
PDF
Album
Full Research Paper
Published 28 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • current densities between 50 and 5000 mA·g−1. Keywords: anode material; cobalt oxide; lithium-ion battery; solution combustion synthesis; transition metal oxide; Introduction Recently, a considerable research effort regarding new anode materials has been made because the traditional carbonaceous anodes
  • surface area of the investigated material was determined with the Brunauer–Emmett–Teller (BET) method based on N2 adsorption–desorption measurements performed with a Thermo Scientific Sorptomatic 1990 analyzer. Battery assembly and electrochemical measurements: In order to use the Co3O4 sample as a
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Toward graphene textiles in wearable eye tracking systems for human–machine interaction

  • Ata Jedari Golparvar and
  • Murat Kaya Yapici

Beilstein J. Nanotechnol. 2021, 12, 180–189, doi:10.3762/bjnano.12.14

Graphical Abstract
  • design perspective. A miniaturized, battery-powered, portable EOG acquisition unit with wireless data transmission capability was realized and directly integrated into a wearable headband, which also contained the graphene textile electrodes (Figure 2). The electrodes were mounted in a newly introduced
  • Instruments, USA) is specifically designed for battery-powered applications with the capability of running with a single supply. Similarly, the other operation amplifiers used in the design were selected due to their single-supply and rail-to-rail features (OPA2365, Texas Instruments, USA) and are suitable
  • nowadays, a lithium-ion/polymer battery with a rating of 3.7 V and 500 mAh was chosen to power the system. The battery charge management circuitry and DC–DC boost converter were based on a MCP73831 (Microchip, USA) and a TPS61090 (Texas Instruments, USA), respectively. To split the regulated 5 V, a rail
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • in a liquid electrolyte. Here, an electrical device design is not necessarily required and the results are relatively straightforward. In contrast, in the two- or four-point methods, a device, such as a supercapacitor or a battery, is produced and the electrode is tested in interaction with second
  • and enable the device to act as a battery. Thus one may call such devices “superbat” (battery-like supercapacitors) [11]. To measure the impedance of the electrodes and, hence, the device, an AC voltage is applied and the real and the imaginary part of the impedance are plotted. Such a plot is called
PDF
Album
Review
Published 13 Jan 2021

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • biochar was synthesized for the use in Li–O2 batteries. The electrocatalytic properties of the obtained electrodes were evaluated in a Li–O2 battery and these electrodes showed superior catalytic performance in Li–O2 batteries. Experimental Preparation of NiFe-PBA/PP-T NiFe-PBA/PP precursors were prepared
  • placed in a glass bottle filled with pure oxygen. The discharge/charge was carried out in a cell voltage range from 2.0 to 4.5 V (vs Li+/Li) at room temperature on a battery tester (Neware, CT-3008, China). The specific capacity was calculated using the mass of the entire cathode. Electrochemical
  • that the overpotential of NiFe-PBA/PP-900 in the Li–O2 cell was comparable to data reported in the literature, as shown in Table 1. An ideal Li–O2 cell has a low charge voltage plateau and a high discharge voltage plateau. The gap between charge and discharge voltage plateaus of the Li–O2 battery with
PDF
Album
Full Research Paper
Published 02 Dec 2020

A self-powered, flexible ultra-thin Si/ZnO nanowire photodetector as full-spectrum optical sensor and pyroelectric nanogenerator

  • Liang Chen,
  • Jianqi Dong,
  • Miao He and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1623–1630, doi:10.3762/bjnano.11.145

Graphical Abstract
  • environment, low cost, and easy preparation [6][7][8][9]. However, the energy supply system of traditional Si-based flexible PDs utilizes an external battery, which will affect the portability, comfort, and durability of wearable devices due to large volume, and limited capacity. Therefore, it is necessary to
  • harvesting energy from the working environment instead of a battery. Comparing with another emerging nanogenerators (triboelectric nanogenerators) [19][20], the PENGs benefit from not requiring external mechanical energy and can make full use of the energy in their own environment. This self-powered system
PDF
Album
Full Research Paper
Published 27 Oct 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • geosciences have low atomic numbers. Lithium, for example, is critical to a low-carbon energy landscape through electric vehicles and battery materials [22][23]. The global carbon cycle is likewise critical for the continued evolution of surface conditions on Earth, both in the geological record [24][25] and
PDF
Album
Full Research Paper
Published 02 Oct 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • development of methods for harvesting energy from the surrounding environment and converting it into electrical power. Through the design of portable electronics and wireless sensor systems [13][14][15][16], which harvest energy from the environment, the adverse environmental effects caused by battery-powered
  • ]. Recently, TENG-based sensors have attracted increased attention [34][35][36][37][38][39][40][41]. In 2014, Ga-doped ZnO was used for the fabrication of piezo-humidity sensors with a high sensitivity and a fast response [42]. In 2018, Vivekananthan et al. proposed sustainable energy harvesting and battery
PDF
Album
Full Research Paper
Published 11 Sep 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • descriptors to the obtained capacities remains a scientific challenge. Keywords: alkaline-ion secondary battery; gas sorption porosimetry; hard carbon; irreversible capacity; ultramicroporosity; Introduction Lithium-ion battery (LIB)-based energy storage devices have been gaining high interest in the recent
  • years in many industrial branches, ranging from electronic devices over battery electric vehicles (BEVs) to applications in grid energy storage. Since for grid energy storage a large amount of installed absolute capacity (rather than specific capacity) is required and LIB cells are still expensive
  • capacity. The most common method to determine SSAs and nanoporosity in the battery community are nitrogen (N2) sorption porosimetry, as well as krypton (Kr) sorption porosimetry in case of very low surface areas. A precise quantification of microporosity (pore diameters smaller than 2 nm), however, cannot
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • approach yields improved mass activity (557 A·g−1 as compared to 80 A·g−1 at 0.39 V overpotential) on the basis of the noble-metal loading, as well as improved stability. Keywords: atomic layer deposition (ALD); oxygen evolution reaction (OER); redox flow battery; vanadium–air redox flow battery (VARFB
  • to stability measurements on very long operation timescales (years) or accelerated degradation tests. Under the operating conditions of a vanadium–air redox flow battery, however, the ALD-treated electrodes show a significant stability improvement towards the strongly acidic vanadium electrolyte
PDF
Album
Full Research Paper
Published 22 Jun 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • were mixed with 5 wt % of PVDF and stirred overnight in NMP to form a thick paste. The paste was used to make a thin electrode film on carbon paper (1.5 cm × 1.5 cm) and dried in an oven at 60 °C. To fabricate two-electrode supercapacitors, two such electrodes were sandwiched between battery-grade
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • microscopy (ESM); LiFePO4; Introduction The growing demand for safe, reliable and efficient energy storage is supporting the development and improvement of current battery technology. Since the introduction of the first Li-ion battery by Sony in the 1990s, the energy and power density have increased yearly
  • and commercial cells are much safer now as compared to their first entrance to the market. However, especially for the automotive sector, the current battery capabilities are still inferior with respect to the expectations of many users regarding energy density and recharging time. Furthermore, recent
  • life-cycle analysis (LCA) studies have emphasized the issues associated with battery production and recycling [1][2][3]. As a consequence there is a trend to reduce or eliminate cobalt as a critical raw material [4][5]. Lithium iron phosphate (LiFePO4 or LFP) is highly promising to achieve this goal
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • developed, such as for the intermodulation AFM method, which uses a battery of lock-in amplifiers [30][31], but the amplification in that case is much smaller than what would be required for ICM-AFM. In addition to the above challenges, which may not represent an exhaustive list, there are challenges that
PDF
Album
Full Research Paper
Published 13 Mar 2020
Other Beilstein-Institut Open Science Activities