Search results

Search for "conductometric" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • electrical signals that may be easily identified and shown by electrical equipment. Electrochemical sensor-based techniques can be classified as conductometric, potentiometric, voltammetric, or amperometric, depending on the electrical signal that needs to be measured [56]. Conductivity is measured using
  • conductometric sensors at various frequencies. In potentiometric sensors, a local equilibrium is created at the sensor–analyte interface, and when no current is present, the composition or concentration of the analyte is determined from the potential difference (voltage) between the working and the reference
PDF
Album
Review
Published 01 Jun 2023

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • ). Additionally, low cost, low power consumption, and simple fabrication of gas sensors are desirable factors. Different technologies have been used to detect numerous gases that include semiconductor, catalytic, electrochemical, optical, and acoustic gas sensors [8]. In particular, conductometric semiconductor
  • structure, inherent rough surfaces, and gaps acting as diffusion channels. Gas-sensing mechanism of fractal structures There are a number of models to explain the function of conductometric SMO gas sensors. For instance, electron depletion layer (for n-type materials) or hole accumulation layer theory (for
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • conductometric measurement-based data provided subnanomolar detection of mercury (≥0.1 nM, 0.02 ppb), which was 100 times lower than the permitted maximum quantity of mercury in water (≈10 nM, ≈2 ppb), as per the United States Environmental Protection Agency (USEPA). The AFM-based measurement also showed
  • SFM (BNA) from the BNAn–dTn hybrid ensemble to form a metallo-DNA duplex of homothymidine sequences, and this transformation was used as a chiroptical and conductometric sensor platform for the ultrasensitive detection of mercury at a subnanomolar level (vide supra) [20][72]. The remarkable outcome of
PDF
Album
Review
Published 09 Jan 2020

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • the sensor response to CO and NH3. The literature data characterizing conductometric gas sensors based on different MO/SiC systems are summarized in Table 2. It should be noted that there are few examples found in the literature [32][33][34], and all the found sources consider different gases. This
  • alignment of the wurtzite ZnO and 3C-SiC phases. Adapted from [37] with permission from the American Chemical Society, copyright 2013. Microstructure characteristics and electrophysical properties of ZnO nanofibers, ZnO/SiC nanocomposites and nanocrystalline SiC powder. Sensor response of conductometric gas
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • , while the inner pair is used for the measurement of the electrical potential drop. This 4-electrode scheme of electrical resistance measurement improves the quality of sensor response detection. In spite of the large number of works dedicated to the use of nanowires as conductometric gas sensors, these
PDF
Album
Full Research Paper
Published 08 Jul 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • in everyday life. Herein, we review recent developments of gas sensors based on electrospun 1D nanostructures in different sensing platforms, including optical, conductometric and acoustic resonators. After explaining the principle of electrospinning, we classify sensors based on the type of
  • benefits and limitations for every approach. Keywords: 1D nanostructures; conductometric devices; electrospinning; gas sensors; optical sensors; resonators; Review 1 Introduction The monitoring and control of air pollutants, toxic gases and explosives has become increasingly important for human wellness
  • conductometric, acoustic resonators and optical). In addition, we provide concluding remarks and an outlook on this rapidly evolving research field on gas sensors based on electrospun 1D nanostructures. 2 Electrospinning The electrostatic effect was first described in 1600 by Willian Gilbert [44][45] through a
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • , since the ingestion of food not properly stored or treated is one of the most frequent reason of hospitalization [1]. Chemical sensors may play a pivotal role in all these applications. Metal oxides were the first to be commercialized as conductometric chemical sensors in form of thick films, and they
  • metal oxides exhibit cross-sensitivity to other chemical species too. This lack of selectivity toward specific chemical species is one of the major drawbacks of the conductometric use of metal oxides. However, an array of devices based on different materials, each with its own sensing properties (a so
  • (HORIBA) at 50× magnification. Spectra were recorded in the wavelength range of 200–1000 cm−1 (WO3, SnO2 and ZnO nanowires), 200–1800 cm−1 (NiO nanowires) and 100–1500 cm−1 (Nb2O5 nanostructures). Functional tests Conductometric sensing devices were fabricated to integrate metal oxide nanowires in
PDF
Album
Full Research Paper
Published 06 Jun 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • of conductometric devices in which multilayer graphene films have been directly synthesized on insulating SiO2 substrates by means of a transfer-free CVD method mediated by Mo. The pre-patterning of the Mo layer allows the graphene to be shaped in the desired form by means of standard lithography
PDF
Album
Full Research Paper
Published 08 May 2017

Gas sensing properties of nanocrystalline diamond at room temperature

  • Marina Davydova,
  • Pavel Kulha,
  • Alexandr Laposa,
  • Karel Hruska,
  • Pavel Demo and
  • Alexander Kromka

Beilstein J. Nanotechnol. 2014, 5, 2339–2345, doi:10.3762/bjnano.5.243

Graphical Abstract
  • ][4][5][6][7]. To date, various publications have focused on conductometric integrating gas sensors, which are able to avoid several problems of conventional gas sensors. Nevertheless, the proper choice of the sensing material plays an essential role [3][4]. Diamond is a promising sensor material and
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2014

Highly NO2 sensitive caesium doped graphene oxide conductometric sensors

  • Carlo Piloto,
  • Marco Notarianni,
  • Mahnaz Shafiei,
  • Elena Taran,
  • Dilini Galpaya,
  • Cheng Yan and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 1073–1081, doi:10.3762/bjnano.5.120

Graphical Abstract
  • studied by varying the gas concentration. The developed GO-Cs sensor shows a higher response to NO2 than the pristine GO based sensor due to the oxygen functional groups. The detection limit measured with GO-Cs sensor is ≈90 ppb. Keywords: caesium; conductometric; doping; drop casting; gas sensor
  • groups have reported high gas sensing performance of conductometric devices based on GO [25][35][45], reduced GO (rGO) [15][23][24][29][46][47] and functionalized rGO [18][48][49][50]. Prezioso et al. [25] have measured the NO2 sensing performance of GO drop casted on standard interdigitated Pt
  • performance of a caesium-doped GO (GO-Cs) based conductometric sensor. Due to the reported catalytic activity of Cs, we believe that the sensing performance of the GO can be improved significantly [53]. Both pristine GO and Cs doped GO sensors have been tested towards different concentrations of NO2 gas at
PDF
Album
Full Research Paper
Published 17 Jul 2014

Nanostructure-directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction

  • James L. Gole and
  • William Laminack

Beilstein J. Nanotechnol. 2013, 4, 20–31, doi:10.3762/bjnano.4.3

Graphical Abstract
  • electrons, decreases the conductometric resistance and increases conductance. The removal of electrons, as would occur with an acidic analyte, decreases the majority charge carrier concentration and the conductance and increases resistance. The opposite behavior will be observed for a p-type semiconductor
  • sufficiently short (10–30 sec.) that the depositions represent an upper bound. If the deposition exceeds the concentration where the nanostructures begin to interact, the observed conductometric signals will display instability. Together, the combination of the distinctly different responses observed can be
PDF
Album
Review
Published 14 Jan 2013
Other Beilstein-Institut Open Science Activities