Search results

Search for "decoherence" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Plasma modes in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2022, 13, 292–297, doi:10.3762/bjnano.13.24

Graphical Abstract
  • and quantum decoherence in normal [9][10] and superconducting [11][12] metallic structures, see also the book [1] for an extensive review on this issue. The presence of Mooij–Schön plasma modes is an important feature inherent to long superconducting nanowires that leads to a number of interesting
PDF
Album
Full Research Paper
Published 04 Mar 2022

Cryogenic low-noise amplifiers for measurements with superconducting detectors

  • Ilya L. Novikov,
  • Boris I. Ivanov,
  • Dmitri V. Ponomarev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1316–1320, doi:10.3762/bjnano.11.115

Graphical Abstract
  • -precision calibration of superconductor technology and for finding new noise sources in Josephson junctions, which lead to high decoherence in superconducting systems [2][3]. The most important part in a measurement readout is a low-noise amplifier. The modern low-temperature low-noise cryogenic amplifiers
PDF
Album
Full Research Paper
Published 02 Sep 2020

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • detected time window is optimized to obtain a better SNR and dynamical decoupling sequences are used to increase the coherence time of the spin sensor by suppressing spin decoherence due to the environment. This increases the sensitivity in the magnetic field amplitude measurements. Dynamical decoupling
  • biological samples, but in general, they suffer from a short coherence time T2. This limits their applications in DC and AC magnetometry. It was understood that high-purity ND can accommodate record-long NV T2 times of >60 μs, albeit observed via universal dynamical decoupling [47]. The main decoherence
  • obtaining the 3D maps of the magnetic field in the sample from the magnetic field images, Monte Carlo simulations of the nuclear spin T2 decoherence was performed in lattices of representative cells. This was done to connect micrometer-scale magnetic field measurements to the MRI contrast. The predicted
PDF
Album
Review
Published 04 Nov 2019

Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”

  • Daria V. Popolitova,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2019, 10, 1548–1558, doi:10.3762/bjnano.10.152

Graphical Abstract
  • , quantum neurons) to improve the speed of quantum computations as well as the relationship between decoherence time and characteristic duration of basic logic gates. One of the possible ways to solve this problem for different types of superconducting artificial atoms [5][6][7] is to use unipolar pulses of
  • inductance correspondingly. By controlling the phases φc and φe (for example, using a voltage Vdc, see Figure 7a), we can transfer a cell from one steady state with a certain value and direction of the circulating current to another along equipotential trajectories. This allows one to reduce decoherence in
PDF
Album
Full Research Paper
Published 29 Jul 2019

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • property in terms of isolation of the qubit and robustness against decoherence processes. Now we turn to the conditions for two-qubit operations. In the original Si quantum computer proposal [2], two-qubit operations are driven by exchange gates, i.e., exchange coupling J pulses between electrons bound to
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Spatial Rabi oscillations between Majorana bound states and quantum dots

  • Jun-Hui Zheng,
  • Dao-Xin Yao and
  • Zhi Wang

Beilstein J. Nanotechnol. 2018, 9, 1527–1535, doi:10.3762/bjnano.9.143

Graphical Abstract
  • protected by the superconducting energy gap [4][15]. They have a long coherence time and are resistant to local decoherence sources [15][2][18][19]. Most importantly, the topological qubits can be topologically manipulated by braiding the Majorana bound states [4][15][17]. These topological braiding
PDF
Album
Full Research Paper
Published 22 May 2018

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • levels, they never cross. Hence, the level crossing turns into a level anti-crossing (often termed avoided crossing); at the level anti-crossing the initial states |K and |L become mixed. The width of the LFE feature is given by the inverse decoherence time in the radical pair, which comes from the
PDF
Album
Review
Published 11 Jul 2017

Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols

  • Ruslan Zaripov,
  • Evgeniya Vavilova,
  • Iskander Khairuzhdinov,
  • Kev Salikhov,
  • Violeta Voronkova,
  • Mohammad A. Abdulmalic,
  • Francois E. Meva,
  • Saddam Weheabby,
  • Tobias Rüffer,
  • Bernd Büchner and
  • Vladislav Kataev

Beilstein J. Nanotechnol. 2017, 8, 943–955, doi:10.3762/bjnano.8.96

Graphical Abstract
  • of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the
  • nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and
  • ][25] can boost the Tm time in molecular complexes up to one order of magnitude [20]. The CPMG pulse protocol can efficiently reduce the manifestation of the unwanted decoherence channel, referred to as spectral diffusion, that arises due to the random modulation of the HF interaction of electron spins
PDF
Album
Full Research Paper
Published 27 Apr 2017

Phenalenyl-based mononuclear dysprosium complexes

  • Yanhua Lan,
  • Andrea Magri,
  • Olaf Fuhr and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 995–1009, doi:10.3762/bjnano.7.92

Graphical Abstract
  • earnest attention in searching new SMMs with enhanced properties has led to the preparation of mononuclear lanthanide complexes. Indeed the mononuclear lanthanide complexes could allow for the study of controlled entanglement of spins on neighboring spin carriers [7], because there is no decoherence of
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2016

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
  • quasi-momentum) is killed by quantum decoherence produced by a stochastic field. Any dissipationless quantum current will proceed on a time scale smaller than the decoherence time. Moreover, it is shown here that the directed transport without dissipation found in [43][44], and the follow-up research
PDF
Album
Review
Published 03 Mar 2016

Magnetic reversal dynamics of a quantum system on a picosecond timescale

  • Nikolay V. Klenov,
  • Alexey V. Kuznetsov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2015, 6, 1946–1956, doi:10.3762/bjnano.6.199

Graphical Abstract
  • to a probe on the border between classical and quantum mechanics [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15]. The possible gate and measurement rates estimated in relation to the decoherence processes for these qubits are within the reach of the threshold for fault-tolerant quantum computing
  • superconducting quantum bits. Results and Discussion Model: two types of external impacts The goal of our investigation is to provide the field-induced dynamics of a quantum magnetic system on the picosecond timescale, which is much faster than all decoherence processes taking place both in atomic-based cells and
  • field; the presence of which allows for the definition of the so-called Larmor frequency, ΩL = γHZ. Classical damping can be set as α = 0 for the simplest case when the decoherence processes in the quantum model can be neglected. For H(t) = H0f(t)cos(ωlt), with ωl = ΩL, ΩLτ >> 1 one can arrive at: For
PDF
Album
Full Research Paper
Published 28 Sep 2015

Molecular materials – towards quantum properties

  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1485–1486, doi:10.3762/bjnano.6.153

Graphical Abstract
  • complexes can be considered to be spin-qubits [2] or spin qugates [3]. Moreover, it was shown that molecule-based nuclear spins are extremely well insulated from environmental perturbations, rendering them less prone to decoherence. By means of synthetic engineering the central fine-tuning of the delicate
  • trade-off between decoupling of the quantum object for low decoherence and connecting it for the electrical read-out could be achieved [2]. Quantum computing, the manipulation of data encoded in qubits instead of bits of information such as spin states of electrons or of an atomic nucleus, has been a
PDF
Editorial
Published 08 Jul 2015

Graphene quantum interference photodetector

  • Mahbub Alam and
  • Paul L. Voss

Beilstein J. Nanotechnol. 2015, 6, 726–735, doi:10.3762/bjnano.6.74

Graphical Abstract
  • ), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon
  • flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency. Keywords: decoherence; graphene
  • , we analyze the total current switching caused by the phase decoherence of electrons by placing a strong photon flux in one or both of the interferometer arms. This structure has the advantages that it does not require a p–n junction, it can operate at subwavelength resolution, its dimensions are very
PDF
Album
Full Research Paper
Published 12 Mar 2015

Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation

  • Julie Jung,
  • Olivier Cador,
  • Kevin Bernot,
  • Fabrice Pointillart,
  • Javier Luzon and
  • Boris Le Guennic

Beilstein J. Nanotechnol. 2014, 5, 2267–2274, doi:10.3762/bjnano.5.236

Graphical Abstract
  • to generate decoherence [20]. If spin-based devices [13] are considered, the influence of supramolecular interactions has to be characterized very well before deposition of the molecule on a surface. This implies new strategies and new investigation tools [21][22]. When the molecule benefits from a
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2014
Other Beilstein-Institut Open Science Activities