Search results

Search for "environmental" in Full Text gives 462 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • ], and other analytical measurements regarding food, medical, and environmental issues [12][13][14]. Undeniably, SERS is the future for sensor design. So far, most achievements regarding SERS rely on the development of plasmonic materials. Noble metals (e.g., Au, Ag, and Cu) are the most important group
PDF
Album
Full Research Paper
Published 16 Apr 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • indicate that the sensor possesses enhanced capability in detecting variations in ambient temperature and effectively monitoring them. Furthermore, the sensor exhibits prompt and accurate perception in response to fluctuations in environmental temperature, as depicted in Figure 4b. To showcase the efficacy
  • durability. This versatile sensor not only accurately detects subtle physiological signals, such as human joint movement. It is also effective in determining changes of the environmental temperature and enables mechanical control mechanisms for security alert systems. This article presents an innovative
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • corona; Introduction The interface between biological systems and engineered materials has gained significant attention in recent years because of its wide range of applications, spanning from food to medicine and environmental science [1][2]. This interface plays a crucial role in ensuring the safety
  • corona content and optimize the processes in food and chemical industry. The presented methodology can be easily extended to other molecules, materials, and contexts involving the bionano interface such as environmental safety, health, medical devices, or toxicology. Schematic representation of the life
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • seen, for ion beam irradiation in air. The height profiles may also be sensitive to environmental conditions especially the nature and availability of counterions [52]; hence, there is a need for in situ chemical analysis to fundamentally explore these effects, which are, at the moment, complicated to
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • such as pathogens [14]. Functional nanomaterials with catalytic activity similar to enzymes (nanozymes) reveal substantial benefits over natural enzymes, such as ultrahigh environmental stability, appropriate catalytic activity, and ease of prototyping [15][16]. We created plate-like silver
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • ], and environmental [17][18]. In recent years, scientists have been very interested in the use of hydrogels in electrocatalytic water splitting to produce hydrogen from renewable energy sources. These studies assume the use of empty spaces, thus ensuring efficient mass transport, as well as increasing
  • , such as environmental engineering [32], renewable energy [22][33][34][35], electronics [36][37][38], medical devices [39][40][41], and drug delivery systems [42][43][44][45]. They combine the properties of a hydrophilic matrix with conductive properties obtained thanks to the use of an appropriate
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • intricacies related to these formulations. Despite none of the authors explicitly mentioning stability challenges as a concern in the nanoparticle manufacturing process, especially in tropical regions characterized by elevated temperatures and humidity, it is a critical aspect to consider. Such environmental
PDF
Album
Supp Info
Review
Published 03 Jan 2024

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • ]. Nevertheless, quantifying the measured currents and resistances remains a bottleneck issue in C-AFM, inhibiting an effective comparison of results to comprehend experimental processes. C-AFM measurements are prone to environmental and experimental factors that heavily affect their stability, reproducibility
  •  1, section S2). The combined uncertainty values in Table 1 were calculated using the root-sum-square method (RSS) from uncertainties related to the sample, the environmental conditions, the measurement circuit, and the measurement repeatability. The uncertainties were estimated using the reference
  • -built external wide-range current measuring device (WCMD), connected to the AFM system operating under ambient environmental conditions (no shielding and no air conditioning system). The WCMD device consists of a current amplifier with an automatic gain regulation. It allows for, under usual AFM
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • not only improves the yield; it also reduces the amount of required pesticide and environmental hazards [16]. Sulfur is considered one of the oldest pesticides used in agriculture for the treatment of a wide range of plant diseases [17]. Elemental sulfur in nanoparticulate forms can be generated by
PDF
Album
Full Research Paper
Published 17 Nov 2023

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • peak at the binding energy typical of surface OH (Figure 10b). This might be related to the chemisorption and decomposition of environmental humidity, enhanced on more crystallised film surfaces. Such a surface OH contribution has been described earlier [33][34]. Complementarily, the valence-band
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • precise motion with high resolution. This offers promising possibilities for biomedical, environmental, and micro/nanoengineering applications [5][6]. Various types of design and actuation mechanisms have been developed in recent years [7][8]. A primary requirement to unlock the better performance of
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • photodetectors (PDs) to “Industry 4.0”, which may include image sensors, biomedical imaging, manufacturing process control, environmental sensing, and optical sensors [8]. Various materials for photodetectors have been developed. Photodetectors can be classified into two main categories, namely PDs that work at
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • to detect analytes of interest in a wide range of applications such as diagnostics, environmental monitoring, and food quality measurements [1][2][3]. LFAs are well known for their simplicity, affordability, accessibility to patients, and ease of use [4]. Since the discovery of this technique in the
PDF
Album
Review
Published 04 Oct 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • metals, upon release and emission, may interact with different environmental components, which may lead to co-exposure to living organisms. Nanoscale titanium dioxide (nano-TiO2) can adsorb heavy metals. The current idea is that nanoparticles (NPs) may act as carriers and facilitate the entry of heavy
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • materials is one of the most relevant fields in materials science. Layered double hydroxides (LDHs), a versatile class of anionic clays, exhibit great potential in photocatalysis, energy storage and conversion, and environmental applications. However, its implementation in real-life devices requires the
  • < x < 0.33). An− symbolizes a constituent ranging from (in)organic anions to macromolecules, and Sv stands for solvent molecules. This general composition leads to a plethora of highly tunable systems [12][13][14][15][16] with relevance in environmental applications [17], photocatalysis [18], energy
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions”, used cryo-scanning electron microscopy to study surfaces of D. antarctica, one of the only two flowering plants native to Antarctica. The results show that the two-layered wax, which
  • densely covers both leaf surfaces, contributes to the plant's adaptation to severe environmental conditions in Antarctica by increasing its resistance to cold temperatures, icing, harmful UV radiation, and dehydration. In the paper “Micro-structures, nanomechanical properties and flight performance of
  • production technologies allow for application-specific modification to develop adjustable, bioactive materials as shown in this review article. In the paper "Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions" by Huth et al. [10], the authors developed wax
PDF
Album
Editorial
Published 03 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • very sensitive to contaminations [16] and environmental changes during preparation to the point where an oxide layer formed on the surface of the lamella could complicate analysis [17][18]. While this oxide layer has a substantial impact, ion-induced damage contributes even more to the degradation of
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • the potential to be a valuable analytical tool for monitoring environmental contaminants. Keywords: 3D printing; microfluidic droplet; SERS substrate; silver nanoparticle; smartphone detection; Introduction Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful optical trace detection
  • excellent analytical performance of the PS@Ag SERS substrate, making it a promising tool for detecting environmental pollutants and ensuring food safety. Photograph of the as-fabricated droplet-based microfluidic device. Images and absorbance spectra of Ag NPs synthesized using silver nitrate and sodium
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material. Keywords: alginate; bacterial activity; catalysis; lactose; silver nanoparticles; synthesis; Introduction
  • also valuable catalysts for the removal of environmental contaminants in aqueous solutions. The high surface-to-volume ratio of AgNPs provides many active sites, thereby, enhancing their catalytic activity [32]. The catalytic activity of AgNPs is also influenced by the morphology and the use of capping
  • surface properties of silver nanoparticles. The highest bioactivity was observed at pH 6. These findings suggest that the nanocomposite may be customized for specific applications in environmental and medicinal treatments, making it a promising material. Experimental Materials The following chemicals and
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • acid coating to the particle surface [22]. Nanoceria partially dissolved in the presence of organic acids in radish root exudates [23]. Nanoceria agglomeration was reported in algae growth medium beyond 28 h of exposure [24]. Collin et al. [25] urged future studies to look into environmental exposures
  • absorption edge in the UVA region [43]. Studying the effects of UV irradiation on nanoceria would be informative for environmental applications. In biological systems, colloidal nanoceria dispersions were found to be non-toxic to fibroblasts and were capable of preventing damage from UV irradiation [44
  • structures. The authors thank Marsha Ensor for her contribution. This report is based on the following: Hancock, M. L. The Fabrication and Characterization of Metal Oxide Nanoparticles Employed in Environmental Toxicity and Polymeric Nanocomposite Applications. Doctoral Dissertation, University of Kentucky
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • various negative environmental consequences of using fossil fuel energy, such as water pollution, increasing emissions of greenhouse gases, and air pollution [1]. Therefore, research regarding eco-friendly and renewable energy resources has emerged [2]. One of the best alternatives to fossil fuels are
PDF
Album
Full Research Paper
Published 26 Jun 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • ], but also from applied fields such as catalysis [20][21], sensors [22][23], devices [24][25], environmental research [26][27], energy [28][29], and biomedical [30][31] fields. In this thematic issue entitled “Nanoarchitectonics for advanced applications in energy, environment and biology”, the authors
  • concept, it can be regarded as method for everything in materials science as shown in the manuscripts published in this thematic issue. By using nanoarchitectonics one can create new functional materials, help with societal development, and solve various problems, such as environmental issues, for
PDF
Album
Editorial
Published 19 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • primary sources of environmental [2]. A Global Warming Potential (GWP) measurement was used to compare the global warming effects of different gases. It has been calculated to reflect how long gases remain in the atmosphere, on average, and how strongly it absorbs energy [3]. Besides, the discharge of
  • persistent organic pollutants (POPs) also contributes to water pollution, increasing global environmental pollution. Recently, the reduction and conversion of CO2 into fuel as valuable hydrocarbon products has been drawing attention from scientists in materials science, chemical engineering, nanotechnology
  • appropriate for treating pollutants, even in atmospheric conditions [9][10][11]. Moreover, the photocatalysis method is also a potential solution for environmental remediation, carbon emission reduction, and renewable energy production [12][13][14]. Combining photocatalysts and sunlight irradiation is a
PDF
Album
Editorial
Published 13 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • was around 1400 tons [1]. Due to their complicated structural makeup, the majority of antibiotics are eliminated unaltered in urine and faeces, which ultimately contaminate natural water sources and soil [2][3][4][5][6]. In environmental samples, antibiotics are currently being found at levels between
  • current trend in the abuse of antibiotics persists, 300 million people will die prematurely globally over the next 28 years [17]. Considering these environmental and health concerns, a number of regulatory bodies and nations, including the EU, have prohibited the use of chemicals and pharmaceuticals with
  • to increased global antibiotic consumption and the usage of various hormones that promote health [18][19]. Therefore, research efforts have been concentrated on monitoring and detecting antibiotics and hormones in environmental, clinical, food, and biological samples due to the bioaccumulation
PDF
Album
Review
Published 01 Jun 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • and Figure 3D show that several yeast cells are embedded in the transparent silica matrix, featuring a visible interface resulting from the shellization process. The G57-4 silica gel materials with embedded yeasts were studied in further detail using the environmental SEM/EDS equipment described below
  • an environmental SEM equipment at different magnifications. (C) Top: Composite image of the silica gel matrix with embedded yeast yolk–shell structures obtained by superimposing the various images of the elements distribution mapping (smaller pictures at the bottom). Schematic representation of the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023
Other Beilstein-Institut Open Science Activities