Search results

Search for "frequency-modulation" in Full Text gives 74 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • amplitude modulation AFM (AM-AFM) and frequency modulation AFM (FM-AFM). Both modes, and their many variants, rely on lock-in detection of the motion signal, and in most cases, this signal is at the same frequency as the excitation. Cavity optomechanical detection principles can be used for both AM-AFM and
PDF
Album
Full Research Paper
Published 15 Feb 2024

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • proportional to the dc potential difference, and one works (like in frequency-modulation KPFM) on a signal that is proportional to the electrostatic force gradient (through C''z). For that reason, this “side-band” KPFM is often referred to as a variant of FM-KPFM. Amplitude-modulated heterodyne KPFM [17
  • is necessary because the first mode is used by the main AFM controller for topographic control (in frequency modulation mode in the case of non-contact AFM under UHV). In other words, it is the AFM controller which generates the source signal at ω0 + Δω0 which “excites” the mechanical oscillation of
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • N/m (nominal), k = 12–21 N/m (measured)) were used for AFM scans. By simultaneously exciting the AFM cantilever to its first and second resonance (f1 = 160–190 kHz and f2 = 900–1150 kHz, Figure 1c) and applying two distinct control conditions (amplitude modulation (AM) and frequency modulation (FM
PDF
Album
Full Research Paper
Published 05 Oct 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • with respect to the cutoff frequency fc of carrier transport between the bulk and interface states and measuring the difference in CPD by KPFM. In high–low KPFM, frequency modulation (FM) KPFM (FM-KPFM) combined with FM-AFM is used to detect the tip–sample interaction force. FM-KPFM has several
PDF
Album
Full Research Paper
Published 31 Jan 2023

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • frequency of 879 Hz, and we used a modulation voltage amplitude of 20 mV after ensuring that spectra did not change in shape with modulation voltages between 5 and 20 mV. The bias voltage and AC signal were applied to the sample. AFM data were acquired in frequency-modulation mode [22] with a sensor
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • sensitivity from operating on eigenmodes with the enhanced spatial resolution due to the electrostatic response being proportional to the second derivative of the capacitance gradient, C″ [57][76][83][84]. This enhanced sensitivity to short range forces (up to three times more sensitive than frequency
  • modulation KPFM [53]) removes the influence of the cantilever and delivers enhanced bandwidth due to the high frequency of ωe [58]. Axt et al. found that Het-KPFM was the most accurate of all modes tested and was able to measure 99% of an applied potential difference even in the presence of strong stray
PDF
Full Research Paper
Published 12 Sep 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • KPFM. Moreover, AC-KPFM is applicable in both amplitude modulation and frequency modulation mode. Thus, it contributes to advancing SPV measurements in various environments, such as vacuum, air, and liquids. This method can be utilized for direct measurements of changes in surface potential induced by
  • relatively slow SPV responses because it is based on the frequency modulation (FM) method in which bandwidth is limited to below a few kilohertz. Recently, a different type of methodology of directly measuring the SPV that is not based on a standard lock-in technique has been demonstrated and implemented to
  • modulated signal, referring to the AC bias null method presented by Kohl and co-workers [28]. AC-KPFM avoids the problem of thermal drift and achieves a higher resolution. We provide the theory for both the amplitude modulation (AM) mode [29] and the frequency modulation (FM) mode [30] and demonstrate
PDF
Album
Full Research Paper
Published 25 Jul 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • [47] operated in the frequency-modulation mode (resonance frequency f0 ≈ 25 kHz, spring constant k ≈ 1800 N/m, quality factor Q ≈ 14000, and oscillation amplitude A ≈ 0.5 Å). The tip mounted to the qPlus sensor consists of a 25 μm-thick PtIr wire, shortened and sharpened with a focused ion beam. A
PDF
Album
Letter
Published 03 Jan 2022

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • common feature is amplitude feedback. An alternative method uses the resonant frequency of the probe as a feedback parameter and is called frequency modulation AFM (FM-AFM). Selection of scan parameters in amplitude modulation AFM Let us consider which parameters we need to adjust in AM-AFM and what
  • high-vacuum conditions, the AFM allows for obtaining atomic resolution [33]. Such measurements are usually carried out in the frequency modulation mode, which means that the driving frequency is automatically kept equal to the current resonant frequency of the probe, and the shift of the resonant
  • using this mode for scanning were discussed in [3][4][5][35]. A comprehensive theoretical and experimental study of the approach curves was carried out in the framework of the development of the frequency modulation mode [12][13][14]. When approaching, the probe amplitude in the DM decreases only due to
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • various contributions from the probe geometry and imaged features of the sample. In contrast to this, the currently implemented closed-loop (CL) variants of KPFM, either amplitude-modulation (AM) or frequency-modulation (FM), solely report on their final product in terms of the tip–sample contact
PDF
Album
Full Research Paper
Published 06 Oct 2021

Determining amplitude and tilt of a lateral force microscopy sensor

  • Oliver Gretz,
  • Alfred J. Weymouth,
  • Thomas Holzmann,
  • Korbinian Pürckhauer and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2021, 12, 517–524, doi:10.3762/bjnano.12.42

Graphical Abstract
  • frequency-modulation atomic force microscopy, the tip oscillates parallel to the surface. Existing amplitude calibration methods are not applicable for mechanically excited LFM sensors at low temperature. Moreover, a slight angular offset of the oscillation direction (tilt) has a significant influence on
  • for a given amplitude and tilt. Finally, the amplitude and tilt are determined by fitting the simulation output to the data with oscillation. Keywords: frequency-modulation atomic force microscopy; lateral force microscopy; amplitude calibration; tilt estimation; Introduction Frequency-modulation
  • setup) or biaxial AFM with normal force detection is required. Experimentally, there are several methods for performing frequency-modulation lateral force microscopy, what we refer to as LFM in this manuscript. In 2002, Pfeiffer and co-workers excited a silicon cantilever in the first torsional mode [4
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • and fq in the in-phase mode (Figure 3 and Figure 6). We found a 0.05 mm tip has the best performance when the tip length is 0.65 mm in the anti-phase mode. However, Ax/Az in the anti-phase mode is 2.36, that is, φ is 23°. In frequency modulation-atomic force microscopy (FM-AFM), the frequency shift Δf
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • were performed using noncontact atomic force microscopy (NC-AFM) under ultrahigh vacuum (UHV) conditions, where the frequency modulation AFM (FM-AFM) method was used. The pressure was maintained below 3 × 10−11 Torr and the temperature was held at 78 K. As a probe, a commercially available Si
PDF
Album
Letter
Published 19 Nov 2020

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • (amplitude and phase in AM-AFM [2], and frequency and amplitude (or dissipation) in frequency-modulation AFM (FM-AFM [3]). Another very important consideration concerning the ability to explore the full range of viscoelastic types of behavior in the sample is the ability of the cantilever to indent it. As
PDF
Album
Full Research Paper
Published 15 Sep 2020

Three-dimensional solvation structure of ethanol on carbonate minerals

  • Hagen Söngen,
  • Ygor Morais Jaques,
  • Peter Spijker,
  • Christoph Marutschke,
  • Stefanie Klassen,
  • Ilka Hermes,
  • Ralf Bechstein,
  • Lidija Zivanovic,
  • John Tracey,
  • Adam S. Foster and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2020, 11, 891–898, doi:10.3762/bjnano.11.74

Graphical Abstract
  • nature. Experimental and Theoretical Methods Atomic force microscopy For the AFM experiments we used a modified commercial atomic force microscope [22] with custom photothermal cantilever excitation [23] and a custom three-dimensional scanning and data acquisition mode [24] in the frequency-modulation
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • geometries. In this manuscript, frequency modulation (FM) AFM was used to determine the interaction forces between two irregularly shaped solids: the apex of a silicon AFM probe with its native oxide and a slightly roughened, nominally flat single-crystal diamond surface. This substrate was chosen due to its
  • contributes to the long-range interaction between tip and sample. Best-fit potential parameters were determined for the silicon oxide–diamond system and the spatial variance of these parameters was examined over different locations across the diamond sample. Experimental Frequency modulation atomic force
PDF
Album
Full Research Paper
Published 06 May 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • feedback control was applied in frequency-modulation mode [30] with constant amplitude oscillation. The cantilever deflection was detected using an optical interferometer [31]. Since the electrostatic force due to the contact potential difference (CPD) between the tip and sample prevents high-resolution NC
PDF
Album
Full Research Paper
Published 10 Mar 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • compensation potential (or surface potential (SP)) on the frequency modulation (fmod) of an illumination source. The first demonstration of light intensity-modulated KPFM (IM-KPFM) was carried out in 2008 by Takihara et al. on polycrystalline Si solar cells [12], and it has been recently applied to organic [13
  • the chosen approach for pp-KPFM are finally discussed. pp-KPFM Implementation The experiments were performed on the basis of noncontact AFM (nc-AFM) under ultrahigh vacuum (UHV) with a beam deflection setup operated in frequency-modulation (FM) mode at room temperature. In the following, we only
  • describe the general setup that has been used to implement data-cube pump–probe-KPFM (Figure 1b and Figure 1c). Additional technical information is provided in the experimental section. We kept the standard SPM controller configuration for frequency-modulation KPFM (FM-KPFM). Here, the electrostatic forces
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Ion mobility and material transport on KBr in air as a function of the relative humidity

  • Dominik J. Kirpal,
  • Korbinian Pürckhauer,
  • Alfred J. Weymouth and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Graphical Abstract
  • relationship between humidity, water coverage and movement speed, however, is complex. In this study we investigated the surface of KBr, a salt crystal, by using frequency-modulation atomic force microscopy (FM-AFM) using a qPlus sensor [9][10][11]. The aim of our experiments is a qualitative and quantitative
  • per hour. The humidity was continuously measured and, if needed, adjusted during the measurement process. All AFM experiments were performed in the frequency-modulation mode with a qPlus sensor with a resonance frequency of 29 to 33 kHz and a stiffness of k = 1.8 kN/m. Typical image parameters were an
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • [9] or Ti/TiOx/Ti memristive devices [10]. Of the two KPFM operation modes, frequency modulation (FM) has proven to be more suitable for the investigation of oxide nanostructures (due to the higher lateral resolution) as compared to amplitude modulation (AM) [11]. Therefore, in our study, we present
PDF
Album
Full Research Paper
Published 02 Aug 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • clarify the term “dissipative interaction” in this manuscript to be any energy loss through a viscoelastic pathway, where the same definition has been used in frequency modulation (FM) AFM studies, such as in [47], to explain energy loss through vertical elastic displacement of step edges. In this case
PDF
Album
Full Research Paper
Published 03 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • out with a custom-built ultrahigh-vacuum noncontact atomic force microscopy (NC-AFM) system operated at a temperature of 78 K with a base pressure below 4 × 10−11 mbar. The NC-AFM system was operated in the frequency-modulation mode [44] with a constant cantilever oscillation amplitude (5 Å). The
  • , 2 min) because O2 affects the oxidation state and thus the electron density on the surface. KPFM measurements were carried out in the frequency-modulation mode [46]. An ac bias voltage (VAC) at the frequency fAC and a dc bias voltage (VDC) were applied to the sample. VDC was adjusted to compensate
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • ≈ 165 kHz, quality factor Qf1 ≈ 30000) with compensated contact potential difference. Kelvin probe force microscopy was performed in frequency-modulation mode using a voltage modulation applied together with the dc compensation voltage to the sample (Vac = 800 mV and fac = 1 kHz or 250 Hz). (a
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • . 2 kHz), which maintained the cantilever at resonance. Images and spectroscopy were acquired using the frequency as signal for the feedback channel (frequency-modulation dynamic mode; FM-DAFM [49]) at small oscillation, which generally implies non-contact operation (so-called attractive regime), for
PDF
Album
Full Research Paper
Published 23 Nov 2018

Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy

  • Kazuki Miyata and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2018, 9, 1844–1855, doi:10.3762/bjnano.9.176

Graphical Abstract
  • loop (PLL) circuit is the central component of frequency modulation atomic force microscopy (FM-AFM). However, its response speed is often insufficient, and limits the FM-AFM imaging speed. To overcome this issue, we propose a PLL design that enables high-speed FM-AFM. We discuss the main problems with
  • dissolution process; frequency modulation atomic force microscopy; high-speed atomic-resolution imaging; phase-locked loop; Introduction Frequency modulation atomic force microscopy (FM-AFM) is a powerful tool for investigating atomic- and molecular-scale structures of sample surfaces in various environments
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2018
Other Beilstein-Institut Open Science Activities