Search results

Search for "hyperthermia" in Full Text gives 69 result(s) in Beilstein Journal of Nanotechnology.

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • photothermal efficiency study for PDA/Fe3O4 and VNB/PDA/Fe3O4 NPs. Following four cycles of NIR laser irradiation, the photothermal stability of the NPs was maintained, with only a negligible decrease observed. These results demonstrate that local hyperthermia induced by NIR laser irradiation can be precisely
PDF
Album
Full Research Paper
Published 28 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • diagnoses, including tumor-targeted drug delivery, hyperthermia, photodynamic therapy, and imaging. Nanomedicines can be made from a variety of inert, biodegradable, and in vivo biocompatible materials. Poly(lactic-co-glycolic acid) is one of the most biodegradable and biocompatible copolymers owing to its
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • , iron oxide nanoparticles are the most prominent ones because of their biocompatibility, low toxicity, ease of synthesis, and high photothermal conversion efficiency. The influence of a magnetic field can also increase temperature generation by such nanoparticles, which is called magnetic hyperthermia
  • photothermal properties are superparamagnetic iron oxide nanoparticles (SPIONs), which are commonly used as a magnetic hyperthermia agent. Because of the excellent absorption in the NIR region, they have been investigated also as photothermal agents [68]. Iron oxide nanoparticles have better stability and
PDF
Album
Review
Published 04 Oct 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • to develop new topical treatments can mean a revolution. SPIONs could be used for topical application, associated with drugs and combined or not with thermotherapy by magnetic hyperthermia. Furthermore, the treatment can be applied to the localized cutaneous lesion, making the treatment more specific
  • ). Discussion SPIONs represent a new approach to diagnosing and treating diseases, particularly when associated with magnetic hyperthermia, an emerging form of active treatment [14][15][16][17][18]. However, despite all their potential, the synthesis processes of the SPIONs are characterized by being expensive
  • the effects of using iron oxide nanoparticles [11][12][15][33][34][35]. Recently, the effects of magnetic iron oxide nanoparticles were demonstrated in L. mexicana axenic amastigotes. First, the amastigotes were treated with 200 µg/mL of magnetic nanoparticles. Subsequently, magnetic hyperthermia was
PDF
Album
Full Research Paper
Published 30 Aug 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • of the field-free point is obtained for assemblies with different nanoparticle size distributions. The results obtained seem to be helpful for the development of a promising joint application of magnetic nanoparticle imaging and magnetic hyperthermia. Keywords: dynamic hysteresis loop; magnetic
  • hyperthermia; magnetic nanoparticles; magnetic particle imaging; specific absorption rate; static magnetic field; Introduction Magnetic nanoparticles, mainly iron oxides, are promising materials for the diagnosis and therapy of oncological diseases [1][2][3]. Important fields of application of magnetic
  • nanoparticles in biomedicine are magnetic particle imaging (MPI) [4][5][6] and magnetic hyperthermia (MH) [1][2][6][7]. Magnetic hyperthermia uses the ability of magnetic nanoparticles to generate heat under the influence of an external alternating (ac) magnetic field of moderate frequency, f = 200–400 kHz, and
PDF
Album
Full Research Paper
Published 14 Apr 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • imaging and magnetic hyperthermia. These particle sizes were smaller than those obtained by high-energy methods (i.e., sonication) [60]. The presence of PLGA in the oil (organic phase) impacts the phase behavior of surfactant systems and thus the phase transitions that take place upon water addition to
PDF
Album
Review
Published 13 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • results showed that the tumor tissues exhibited a higher rate of apoptosis [77]. In summary, cancer cell membrane-mediated bionanotechnology shows promise for precisely targeted and individualized therapies. 4.2 Hyperthermia Hyperthermia is a cancer treatment method that can convert external energy (e.g
  • targeting and hyperthermia [56]. In a therapeutic strategy for HCC, hepatoma cell membranes and macrophage membranes were hybridized to obtain the advantages of different cell membranes [78]. When nanocarriers with photothermal conversion ability were used to carry the anticancer drug sorafenib, efficient
  • drug release and photothermal cell killing were realized [78]. Magnetic hyperthermia (MHT) is another hyperthermia strategy, which generates heat under the excitation of a magnetic field [98]. Magnetic NPs have shown promise in diagnosis and therapeutic effects due to their multiple functions (e.g
PDF
Album
Review
Published 27 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • ]. Localized heat generation through GNPs under irradiation can be used for hyperthermia treatment of tumors, termed plasmonic photothermal therapy (PPTT) [7][8][9][10][11]. The net temperature rise of a GNP-containing medium highly depends on shape and size of the GNPs, the dielectric constant of the medium
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • nanoparticles have been proposed as contrast agents for magnetic resonance imaging, high-precision biosensors, and carriers in magnetic-assisted drug delivery systems. Furthermore, they are used for tumor treatment via the hyperthermia method and in bone tissue regenerative medicine [5][6]. However, using iron
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • development of Au- and BODIPY-grafted LNPs using a very simple and convenient method. PTT-induced direct anti-tumor effects through photothermal ablation or hyperthermia have been widely studied [28]. AuNPs are one of the most attractive PTAs for biomedical applications because of their biocompatibility and
  • effect (EPR) of tumors, AB-LNPs will have a good tumor accumulation ability. The enhanced cellular uptake efficiency and the laser-responsive release properties of AB-LNPs could further improve the anti-tumor effects. The clinically applicable temperatures for hyperthermia range from 43 to 47 °C since
PDF
Album
Full Research Paper
Published 02 Dec 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • in 3D space could provide accurate data to be used as input in various physical models of magnetism (e.g., the micromagnetic Stoner–Wolfarth or Landau–Lifshitz–Gilbert models [12][13]). In the field of hyperthermia therapies [14][15], involving various types of ferrofluids, or in the development of
  • advancements in medical fields (hyperthermia and drug delivery), permanent magnet industry, sensoristics, and spintronics. The program has been tested not only on simulated tomograms but also on tomograms obtained on real-life systems of magnetite MNPs, obtained in-house by co-precipitation methods. Starting
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • MRI imaging, targeted drug delivery and hyperthermia therapy [8][9]. Hyperthermia therapy can be achieved by using either magnetic fields or NIR irradiation. Application of an external alternating magnetic field on these nanoparticles leads to the production of heat to mediate magnetic hyperthermia
  • , whereas exposure to and subsequent absorption of NIR light by iron oxide nanoparticles promotes NIR-induced hyperthermia [10]. Although magnetic hyperthermia has been widely used in biomedical research, it is subject to several limitations such as the need for sophisticated equipment, cellular confinement
  • and lower hyperthermia efficiency [11]. Indeed, other researchers find that the temperature increase by magnetic hyperthermia is much lower than that of NIR-induced heating, presumably due to the coating layers needed for biological dispersion [12]. Yu et al. first discovered strong photothermal
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
PDF
Album
Review
Published 14 Feb 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • of magnitude with an increase in the volume fraction of nanoparticles in a cluster in the range of 0.04–0.2. Keywords: elongated magnetic nanoparticles; magnetic hyperthermia; numerical simulation; specific absorption rate; Introduction Magnetic nanoparticle assemblies have great potential for the
  • use in biomedicine, in particular, in magnetic hyperthermia [1][2][3][4], a new promising approach for cancer treatment. In this method, magnetic nanoparticles introduced into a tumor and excited by an alternating (ac) low-frequency magnetic field are able to warm up malignant tissues locally. In most
  • cases this stops the tumor growth and results in its decay. However, it are magnetic nanoparticles with low toxicity and a high specific absorption rate (SAR) of the energy of the ac magnetic field that are needed in magnetic hyperthermia. The use of optimized assemblies of magnetic nanoparticles can
PDF
Album
Full Research Paper
Published 28 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • -assisted control of the behavior of MNPs makes them suitable candidates for targeted drug delivery, hyperthermia, biosensors, magnetic resonance imaging (MRI), and magnetic separation [9][10]. Magnetite (Fe3O4) nanoparticles (NPs), belonging to the spinel ferrite class, are the most extensively studied
  • MNPs for clinical applications and many of them have been approved by the Food and Drug Administration (FDA) agency. Their intended applications include hyperthermia, disease diagnosis, MRI contrasting agents, and improvement of iron deficiencies [11][12]. Aside from their useful applications
PDF
Album
Full Research Paper
Published 02 Dec 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • biocompatibility and magnetic properties, have found applications in drug delivery, magnetic resonance imaging and treatment of iron deficiencies [3][4][5][6]. The property of hyperthermia has been found to be beneficial in localized drug release, particularly in cancer therapy [7]. In anti-cancer therapy, IONPs
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • capable of responding to magnetic fields, which can be magnetically directed to the target tissue where the compound of interest can be released [130][131]. Magnetic nanoparticles can also improve imaging and cause localized hyperthermia (39.5–43 °C), which can be used as a complementary attack strategy
  • silica nanoparticles showed a synergistic therapeutic effect in in vivo and in vitro models of liver cancer due to their superior superparamagnetic properties, hyperthermia, high CUR-loading capacity, and sensitivity to the microenvironment of the tumor [137]. Authors argue that the magnetic sensitivity
  • of nanosystems, precise drug delivery, and sustained release support their recommendation to be used as a drug delivery mechanism to induce apoptosis due to hyperthermia (41.85 °C) [136] and higher drug concentration at the target site [138]. Photodynamic nanosystems. Photodynamic therapy is based on
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • quest for more potent treatment and diagnostic procedures. In this review, the mechanisms of action of US-responsive nanomaterials, including cavitation, acoustic radiation force (ARF), phase transition, reactive oxygen species (ROS) production, and hyperthermia will be discussed in the first step. A
  • application of US would affect the tissues and US-responsive nanomaterials through five distinct mechanisms, leading to the therapeutic or diagnostic activities of US-responsive nanomaterials. Cavitation, acoustic radiation force, acoustic droplet vaporization, hyperthermia, and free radical species
  • et al. demonstrated that in addition to cargo release and MB formation, tumor tissue damage also occurred after ADV triggered by US [138]. The schematic illustration of this mechanism is presented in Figure 2. Hyperthermia Ultrasound has a good ability to penetrate deep within the human body, and its
PDF
Album
Review
Published 11 Aug 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • Synthesis of the DOX-loaded GNR nanocomplex In the present study, DOX-conjugated GNRs and hyperthermia were employed as a treatment strategy for HCC cells. First, GNRs were synthesized according to the well-known seed-mediated growth method [25] with a slight modification reported in our previous work [26
  • laser irradiation, as evidenced by the rapid temperature increase on the nanocarrier surface under 808 nm laser exposure for 2 min. A high cytotoxicity was observed with DOX-PSS-GNRs after NIR laser irradiation, in contrast to DOX alone. The GNRs could proficiently produce hyperthermia by converting NIR
PDF
Album
Full Research Paper
Published 31 Mar 2021

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • neurological disorders. Excessive ambient glutamate concentration is a characteristic feature of, among others, stroke, brain trauma, epilepsy, and seizure development. Superparamagnetic γ-Fe2O3 nanoparticles are very promising in targeted drug delivery, cancer therapy, diagnostics, and hyperthermia treatment
  • due to their magnetism and chemical stability [9][10][11][12][13]. Among a variety of other nanoparticles, superparamagnetic iron oxide nanoparticles are used for magnetic resonance imaging in cancer theranostics and magnetic hyperthermia [9][10][11][14]. Controlled magnetic fields can lead to induced
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • environmental benigness [4][5][6][7][8]. These nanomaterials can be exploited in a variety of applications, including magnetic data storage [9], magnetic resonance imaging (MRI) [6][10][11][12], hyperthermia [6][13][14][15], magnetic separation [16], targeted drug delivery [6][16][17][18][19], lithium-ion
  • properties and a larger length-scale of the locally induced magnetic field in comparison to nanospheres with a similar volume, providing an enhanced MRI contrast [11][19][23], higher specific adsorption rate in magnetic hyperthermia [13], and better separation efficiency in magnetic separation of immune
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • Abstract Colloidal systems consisting of monodomain superparamagnetic nanoparticles have been used in biomedical applications, such as the hyperthermia treatment for cancer. In this type of colloid, called a nanofluid, the nanoparticles tend to agglomeration. It has been shown experimentally that the
  • relaxation time; nanoparticle coating; numerical simulation; stochastic Langevin dynamics method; superparamagnetic nanoparticles; Introduction One of the most important biomedical applications of colloidal magnetic nanoparticle systems is magnetic hyperthermia applied as an alternative for cancer treatment
  • generating heat. This heat increases the tumour cell temperature which leads to cell death [1][2][3][4]. Iron-oxide magnetic nanoparticles, in particular magnetite (Fe3O4) and maghemite (γ-Fe2O3), have been intensely studied in the context of magnetic hyperthermia applications. These nanoparticles can be
PDF
Album
Full Research Paper
Published 12 Aug 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • NIR-induced hyperthermal effect on the bacteria elimination, the hyperthermia could also trigger a release of more Ag+ ions as a synergic effect. New methods for detecting and eliminating antibiotic-resistant, Gram-negative bacteria were developed by conjugating the phages to gold nanorods, whose
  • thiol monolayers, aiming to impart a different wettability to the surfaces [63]. It was verified that the photothermal features and the consequent hyperthermia-derived antibacterial effects were not affected by the thiol layers, which enable the eradication of at least 99.99% of the bacterial strains
  • of the antibacterial ions can act synergistically with the NIR-induced hyperthermia to eliminate the bacteria and biofilm. Silver nanoparticles that absorb in the NIR spectral range can be used for the photothermal elimination of bacteria and this physical effect can be enhanced by both the release
PDF
Album
Review
Published 31 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • behave like one magnetic unit, rotating in the presence of a magnetic field without retaining the magnetism after the magnetic field is removed [17]. This property makes SPIONs good candidates for MRI, and also for a type of thermic treatment of cancer, called localized hyperthermia. There are also other
  • pool (ferritin and transferrin) for normal metabolic activities [20]. In localized hyperthermia, SPIONs generate heat by constantly aligning to an alternating magnetic field. This heat is rapidly transferred to the surrounding cancerous tissue in which proteins denature and, consequently, cells become
  • , dendrimers, albumin, silicones, liposomes, poloxamer, poly-ʟ-lysine, sugars, or polyethylene glycol (PEG) [27][28][29][30][31][32][33]. Hyperthermia treatment for cancer therapy is still under scrutiny. It shows great potential due to the property of SPIONs to produce local heat when placed under an
PDF
Album
Review
Published 27 Jul 2020
Other Beilstein-Institut Open Science Activities