Search results

Search for "iCVD" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • studied the ability of the initiated chemical vapor deposition (iCVD) process to coat 3D-printed shapes composed of poly(lactic acid) and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along
  • with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and
  • SLA-printed objects and wastes unused initiator embedded within the bulk structure. The breadth of materials and feature sizes of 3D-printed objects presents a challenge to finding a universal method for surface functionalization. Initiated chemical vapor deposition (iCVD) is a technique that can be
PDF
Album
Full Research Paper
Published 08 Aug 2017

Nanotopographical control of surfaces using chemical vapor deposition processes

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 1250–1256, doi:10.3762/bjnano.8.126

Graphical Abstract
  • feed. Trujillo et al. produced polymeric nanostructures using colloidal lithography [12]. In this technique, two-dimensional self-assembled monolayer (SAM) arrays of colloidal nanoparticles serve as lithographic templates for “nanobowl” patterns in an initiated chemical vapor deposition (iCVD) process
  • method to produce periodic wrinkle structures on the surface of polymer films using prestrained substrates [28]. Various polymers were deposited on prestrained PDMS substrates using iCVD. The subsequent release of the strain leads to microstructured wrinkles, where the topography is controlled by tuning
  • , condensable species into the gas feed mixture ensures phase separation simultaneously with the polymerization and crosslinking reactions. The porogen is removed in a post-deposition process using vacuum or solvent treatment. Gupta and co-workers demonstrated that in the iCVD process the monomer itself can act
PDF
Album
Review
Published 12 Jun 2017

Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties

  • Paul Christian and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2017, 8, 933–942, doi:10.3762/bjnano.8.95

Graphical Abstract
  • chemical vapor deposition (iCVD) were investigated. PFDA polymers are known for their interesting crystalline aggregation into a lamellar structure that induces super-hydrophobicity and oleophobicity. Nevertheless, when considering applications which involve chemical, mechanical and thermal stresses, it is
  • . Keywords: EGDMA; iCVD; in situ; PFDA; spectroscopic ellipsometry; temperature dependent; X-ray diffraction; Introduction Fluoropolymers, such as polytetrafluoroethylene, are interesting for a variety of different applications due to their low surface energy. The resultant hydrophobic and oleophobic
  • surfaces based on perfluoroacrylates were previously prepared by initiated chemical vapor deposition (iCVD) [8]. The iCVD technique allows polymerization of the fluorinated monomers, while the chemical structure of the precursor(s) remains intact. Therefore, ultrathin (<100 nm) perfluoropolymers can be
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2017

Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition

  • Alper Balkan,
  • Efe Armagan and
  • Gozde Ozaydin Ince

Beilstein J. Nanotechnol. 2017, 8, 872–882, doi:10.3762/bjnano.8.89

Graphical Abstract
  • were done via oxidative chemical vapor deposition (oCVD) and initiated chemical vapor deposition (iCVD) to enhance the control and sensitivity level of humidity sensors. By using the vapor deposition method oCVD, we achieved conformal coatings of PANI, which allowed us to produce nanotubes with high
  • temperature (25–100 °C), adequate electrical conductivity for a wide range of applications and high-quality conformal CP thin films on various non-planar surfaces [39][40][41]. In this study, the vapor-phase oCVD and iCVD techniques were used to conformally coat the walls of the pores of anodized aluminium
  • using iCVD and oCVD techniques. Ability to control the thickness during deposition via these vapor-phase methods allowed depositing two layers of different polymers inside the pores of AAO track-etch membranes. The characterization of the PANI thin films deposited by the vapor-phase oCVD method showed
PDF
Album
Full Research Paper
Published 18 Apr 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • -studied, conformal polymer CVD techniques: parylene CVD and initiated CVD (iCVD), with both deriving from free radical polymerization mechanisms. The four parts of this review will address reaction mechanisms of the aforementioned techniques, necessary deposition conditions for conformal film growth
  • the introduction of new chemistries into the final poly[p-xylene] structure such as halogens, amines, and esters [15][16]. Initiated CVD iCVD is another free radical polymerization technique where instead of a single reactive species, a monomer and an initiating radical are needed to form the final
  • polymerization. The most common monomers polymerizable by iCVD are acrylates, methacrylates, and other vinyl (>C=C<) containing monomers [17][18]. However, acetylenic (–C≡C–) monomers have been polymerized as well [19]. The effect of deposition conditions Depending on the conditions used, a CVD process can vary
PDF
Album
Review
Published 28 Mar 2017

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2013
Other Beilstein-Institut Open Science Activities