Search results

Search for "mucus" in Full Text gives 22 result(s) in Beilstein Journal of Nanotechnology.

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • examining the characteristics of nanoparticles used for drug delivery, one can see that some are better understood then others. The size of nanoparticles, for example, is shown to play an important role in tissue or mucus penetration [8] and in cellular uptake [9]. Also surface charge and chemical
  • barriers besides cellular membranes need to be addressed. A few examples of these barriers are penetration in or permeation through mucus, skin penetration, overcoming the blood brain barrier, or extravasation from blood vessels. Another challenge is the accumulation of particulate drug delivery systems in
  • particle elasticity to overcome the mucosal barrier Mucus covers a large area of our body and is an important barrier for many drugs as it covers common application routes such as the intestines, the lungs, nose, and vagina. Regarding the penetration through mucus, Lenzini et al. demonstrated in a study
PDF
Album
Perspective
Published 23 Nov 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • a basis to unravel the interplay between the feeding structures of suspension feeders, the preferred food, and the gathering performance. Additionally, it could open new avenues in the development of new filtration technologies (e.g., mucus-like filter media or bioinspired membranes) that use
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • from GIT conditions and deliver the drug to the intestinal tumoral region by accumulating in mucus has been designed. For this purpose, DCX-PLGA nanoparticles (NPs) and CS/DCX-PLGA NPs were prepared, and their in vitro characteristics were elucidated. Nanoparticles around 250–300 nm were obtained. DCX
  • -PLGA NPs had positive surface charge with CS coating. The formulations have the potential to deliver the encapsulated drug to the bowel according to the in vitro release studies in three different simulated GIT fluids for approximately 72 h. Mucin interaction and penetration into the artificial mucus
  • layer were also investigated in detail, and the mucoadhesive and mucus-penetration characteristics of the formulations were examined. Furthermore, in vitro release kinetic studies of the NPs were elucidated. DCX-PLGA NPs were found to be compatible with the Weibull model, and CS/DCX-PLGA NPs were found
PDF
Album
Full Research Paper
Published 23 Nov 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • of a pulmonary disease, where the airway–mucus barrier is difficult to penetrate, nanoparticles in the size range of 200 nm are more effective in mucus penetration [20][37]. The effect of surface chemistry on the mechanism of NPs uptake is, however, not sufficiently understood yet. Understanding the
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • , 66119 Saarbrücken, Germany KIST Europe, 66123 Saarbrücken, Germany 10.3762/bjnano.10.220 Abstract Great challenges still remain to develop drug carriers able to penetrate biological barriers (such as the dense mucus in cystic fibrosis) and for the treatment of bacteria residing in biofilms, embedded in
  • mucus. Drug carrier systems such as nanoparticles (NPs) require proper surface chemistry and small size to ensure their permeability through the hydrogel-like systems. We have employed a microfluidic system to fabricate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with a muco-penetrating
  • was loaded (EE% of ≈68%) very efficiently into the nanoparticles. Finally, the permeability of muco-penetrating PLGA NPs through pulmonary human mucus was assessed; small NPs with a diameter of less than 100 nm showed fast permeation, underlining the potential of microfluidics for such pharmaceutical
PDF
Album
Full Research Paper
Published 19 Nov 2019

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • example of an innate immune system in a human, with external defenses such as hair, skin, and mucus and internal defenses such as mast cells, natural killer cells, and phagocytes [40]. The internal response in all animals has both humoral and cellular components [47]. Humoral components refer to those
  • include mucus, melanin, and/or agglutinin. The cellular response of invertebrates includes haemocytes/coelomocytes (invertebrate equivalents of blood cells and leukocytes) circulating throughout the body, humoral factors, and complement factors to aid in the destruction and removal of harmful microbes [16
PDF
Album
Review
Published 19 Mar 2018

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • approach is based on the epithelial barrier dysfunction of the intestine during intestinal inflammation. The intestinal barrier shows an increased permeability by disabled tight junction proteins, alterations in the thickness and composition of the mucus. Thus, particles penetrate and accumulate only into
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • mucus on the apical cell side could also constitute a further obstacle for particle association with the barrier. Furthermore, we found that the majority of nanoparticles associated with the cells were adsorbed to the outer cell membranes, rather than being internalised by the Caco-2 barriers. Thus
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • systems [16]. The adhesive tongues of frogs are an efficient tool capable of capturing fast moving prey. It is plausible that the interaction between the tongue surface and the adhesive mucus coating is important for generating strong pull-off forces. The paper by Kleinteich and Gorb is a comparative
PDF
Editorial
Published 08 Feb 2017

Frog tongue surface microstructures: functional and evolutionary patterns

  • Thomas Kleinteich and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 893–903, doi:10.3762/bjnano.7.81

Graphical Abstract
  • adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However
  • demonstrated for South American horned frogs (genus Ceratophrys) that the adhesive forces that frog tongues can produce and withstand are even higher than the body weight of the animals, at least if measured against a glass surface [7]. Further, we found that adhesive forces are higher if less mucus remained
  • on our test surface and that the amount of the mucus coverage increases with increasing contact duration. These results suggested (1) that during the initial contact formation, only small amounts of mucus are present on the tongue and (2) that besides chemical and physical properties of the mucus
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2016

The eNanoMapper database for nanomaterial safety information

  • Nina Jeliazkova,
  • Charalampos Chomenidis,
  • Philip Doganis,
  • Bengt Fadeel,
  • Roland Grafström,
  • Barry Hardy,
  • Janna Hastings,
  • Markus Hegi,
  • Vedrin Jeliazkov,
  • Nikolay Kochev,
  • Pekka Kohonen,
  • Cristian R. Munteanu,
  • Haralambos Sarimveis,
  • Bart Smeets,
  • Pantelis Sopasakis,
  • Georgia Tsiliki,
  • David Vorgrimmler and
  • Egon Willighagen

Beilstein J. Nanotechnol. 2015, 6, 1609–1634, doi:10.3762/bjnano.6.165

Graphical Abstract
  • proposed to extend the list of endpoints for hazard identification to include cell uptake, cell viability, oxidative stress, inflammation, fibrosis, immunotoxicity, cardiovascular toxicity, ventilation rate, gill pathologies, mucus secretion and brain pathology. The EU guidance document lists the main
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2015

Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells

  • Christa Schimpel,
  • Oliver Werzer,
  • Eleonore Fröhlich,
  • Gerd Leitinger,
  • Markus Absenger-Novak,
  • Birgit Teubl,
  • Andreas Zimmer and
  • Eva Roblegg

Beilstein J. Nanotechnol. 2015, 6, 1457–1466, doi:10.3762/bjnano.6.151

Graphical Abstract
  • ; elasticity; M cells; mechanical properties; Introduction The human small intestine consists of a cell monolayer, which is predominantly composed of enterocytes mixed with mucus-secreting goblet cells [1]. Apart from enterocytes, membranous epithelial cells (M cells) reside throughout the small intestine as
  • . However, it has to be added that AFM measurements performed under semi-dried conditions also show limitations, since physiological conditions are not fully reflected but are likely to change the interface between the gut lumen and the brush boarder membrane. Intestinal mucus, for instance, is continuously
  • secreted by goblet cells and forms an efficient acellular barrier that strongly impacts adhesive interactions between intestinal epithelial cells and diverse substances/antigens. Due to intake of food, differences in the pH occur, which leads to changes in the viscoelastic properties of the mucus layer
PDF
Album
Full Research Paper
Published 06 Jul 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • the plates, the viscosity of the fluid, the speed of separation and the inverse of the separation distance. The equation for Stefan adhesion predicts very high forces for materials with the viscosity of mucus, but assumes rigid plates, and attempts to quantify the effect in limpets and tree frogs have
  • mucus dictates the sliding force. The topic is further complicated by the fact that animals can secrete more than one material. Moreover, as the viscosity of the material increases there is a transition to glues. In particular, adhesive gels of gastropods can contain specific glue proteins with gel
  • demonstration that we need better understanding of viscosity-mediated attachment. Viscous adhesion is clearly important to the real, biologically messy, and sometimes mucus-laden real world, but the underlying processes are not fully understood for submerged cases. The community needs useful theoretical models
PDF
Album
Review
Published 17 Dec 2014

Coating with luminal gut-constituents alters adherence of nanoparticles to intestinal epithelial cells

  • Heike Sinnecker,
  • Katrin Ramaker and
  • Andreas Frey

Beilstein J. Nanotechnol. 2014, 5, 2308–2315, doi:10.3762/bjnano.5.239

Graphical Abstract
  • and secreted mucus [16]. As a final barrier the enterocyte cell layer must be breached. These cells are columnar epithelial cells with a brush border membrane on the apical side, covered by the glycocalyx, a dense mesh of glycostructures [17], and connected to each other by tight junctions [18]. From
PDF
Album
Full Research Paper
Published 02 Dec 2014

The gut wall provides an effective barrier against nanoparticle uptake

  • Heike Sinnecker,
  • Thorsten Krause,
  • Sabine Koelling,
  • Ingmar Lautenschläger and
  • Andreas Frey

Beilstein J. Nanotechnol. 2014, 5, 2092–2101, doi:10.3762/bjnano.5.218

Graphical Abstract
  • adhered to the epithelium or resided in the tissue, the bulk of particles seemed to be trapped in the mucus lining the gut tube. When this mucus was dissolved and removed from the gut almost the entire amount of particles missing could be recovered: over 95% of the given NPs were present in the two
  • fractions, the luminal samples and the dissolved mucus. To foster NP uptake via an extended interaction time with the epithelium, the intestinal peristalsis was decelerated and the duration of the experiment was prolonged. Even under those conditions, no particle fluorescence was detected in the vascular
  • and lymphatic samples. Conclusion: We could show that after intestinal exposure with a large dose of NPs the vast majority of NPs did obviously not come into contact with the epithelium but was either directly discarded from the gut or trapped in mucus. The healthy small intestinal tract evidently
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

  • Torsten Bölke,
  • Lisa Krapf,
  • Regina Orzekowsky-Schroeder,
  • Tobias Vossmeyer,
  • Jelena Dimitrijevic,
  • Horst Weller,
  • Anna Schüth,
  • Antje Klinger,
  • Gereon Hüttmann and
  • Andreas Gebert

Beilstein J. Nanotechnol. 2014, 5, 2016–2025, doi:10.3762/bjnano.5.210

Graphical Abstract
  • dot nanoparticles (yellow). Some of the nanoparticles adhere to mucus (upper third in a and b), some others adhere to the apical membrane of the epithelial cells (arrows in b). The grainy structure in the lumen (encircled in a) represents photon shot noise only; it is completely removed by the
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • ) and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins
  • MTT assay (Figure 6). Similar to the lung surfactant [32], also epithelial cell of the GI tract are covered by an additional biobarrier, i.e., by mucous matrices [33]. To investigate the impact of mucus associated to GI tract cells on the observed effects, we included the mucus-secreting colorectal
  • cell line HT-29 in our study. The HT-29 cell model is a widely accepted model for studying the impact of mucus associated to cells of the GI tract [33]. As shown in Figure 6C, even in the presence of cell-associated mucus the cytoprotective impact of the protein corona was preserved. Effect of the
PDF
Album
Full Research Paper
Published 27 Aug 2014

The surface microstructure of cusps and leaflets in rabbit and mouse heart valves

  • Xia Ye,
  • Bharat Bhushan,
  • Ming Zhou and
  • Weining Lei

Beilstein J. Nanotechnol. 2014, 5, 622–629, doi:10.3762/bjnano.5.73

Graphical Abstract
  • structure is also present on the surface of the mitral valve leaflets. Namely the distribution of the nano-scale cilia structure on the micron papillae is similar to the distribution of the microstructure on the surface of the aortic valve cusps. Without treatment by heparin there is a lot of mucus attached
  • , the cilia structure was destroyed, so it is not obvious. However, because of the elimination of mucus, the mastoid structure became very clear. In addition, the arrangement of the microstructure on the surface of the mitral valve leaflets can be seen as directional, and its direction is consistent
PDF
Album
Full Research Paper
Published 13 May 2014

Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker

  • Francesca Tramacere,
  • Esther Appel,
  • Barbara Mazzolai and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 561–565, doi:10.3762/bjnano.5.66

Graphical Abstract
  • this case, small ciliary tufts occur at a very low density in the side foot; whereas, they become significantly more dense in the sole foot. Similar to octopus suckers, the cilia are covered by a layer of mucus. However, in all the three cases (octopus, abalone, and clingfish), the hairs lack the
  • termini contact elements as well as the presence of water and mucus between hairs and respective substrates suggest that biological structures operating underwater cannot exploit filament-like structures to generate van der Waals forces [3]. We completely agree with this idea and think that under wet
  • adhesion conditions, a system consisting of hairs, mucus, and water (just like octopus suckers) could improve attachment due to following mechanisms: (i) exploiting the presence of mucus and filaments to increase the viscosity coefficient at the interface and to resist to the shear forces; and (ii
PDF
Album
Letter
Published 02 May 2014

Analysis of fluid flow around a beating artificial cilium

  • Mojca Vilfan,
  • Gašper Kokot,
  • Andrej Vilfan,
  • Natan Osterman,
  • Blaž Kavčič,
  • Igor Poberaj and
  • Dušan Babič

Beilstein J. Nanotechnol. 2012, 3, 163–171, doi:10.3762/bjnano.3.16

Graphical Abstract
  • multicellular organisms, generation of a fluid flow above a surface is crucial for transporting an ovum in the Fallopian tubes, or for moving mucus in the respiratory tract, to name just two examples found in humans. Motion of fluid is also vital for embryonic development in vertebrates as directed flow
PDF
Album
Full Research Paper
Published 24 Feb 2012
Other Beilstein-Institut Open Science Activities