Search results

Search for "nanografting" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • a top electrode. We were able to determine a relationship between island size and electrical conductivity, and from this dependence, we could obtain information on the lateral charge transport and charge carrier mobility within the thin OSC layers. Our study demonstrates that AFM nanografting of
  • the determination of mobilities in macroscopic samples. Keywords: conducting atomic force microscopy; lateral charge transport; nanografting; organic semiconductor; self-assembled monolayer; Introduction Charge transport in organic semiconductors plays a central role in the field of molecular
  • . Then, the process of nanografting was performed in the contact mode (cantilever type: NSC-18/Cr-Au, spring const. 2.8 N/m, µmasch, NanoAndMore GmbH) with an increased force (setpoint: −0.66 V) of the tip on the surface. During the scanning process (scan rate: 5 Hz, number of lines: 512), the targeted
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

  • Landon J. Brower,
  • Lauren K. Gentry,
  • Amanda L. Napier and
  • Mary E. Anderson

Beilstein J. Nanotechnol. 2017, 8, 2307–2314, doi:10.3762/bjnano.8.230

Graphical Abstract
  • microscale [2][18][19]. To fabricate the MOF for integration, methods such as microcontact printing and nanografting have been utilized to create chemical patterns onto which the surMOF is selectively grown [20][21]. Confined geometries have been utilized in conjunction with conventional and nonconventional
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Investigating organic multilayers by spectroscopic ellipsometry: specific and non-specific interactions of polyhistidine with NTA self-assembled monolayers

  • Ilaria Solano,
  • Pietro Parisse,
  • Ornella Cavalleri,
  • Federico Gramazio,
  • Loredana Casalis and
  • Maurizio Canepa

Beilstein J. Nanotechnol. 2016, 7, 544–553, doi:10.3762/bjnano.7.48

Graphical Abstract
  • after reaction with competitive ligands. The films were investigated in liquid, and ex situ in ambient air. The SE investigation has been complemented by AFM measurements based on nanolithography methods (nanografting mode). Conclusion: Our approach to the SE data, exploiting the full spectroscopic
  • sum D of dI and dTF (2.4 ± 0.3 and 3.3 ± 0.3 nm for the NTA1 and NTA2 SAMs, respectively) accounts for the total film thickness that is reflected in the δΔ1,0 spectra. The AFM images of Figure 3a are representative of experiments of nanografting of T-OEG6 molecules in NTA SAMs. The latter were
  • coefficients related respectively to p- and s-polarization. The ellipsometric analysis is performed through comparison between experimental and simulated data. Simulations are based on models that take into account optical and morphological properties of the layered sample. AFM nanografting and imaging AFM
PDF
Album
Full Research Paper
Published 13 Apr 2016

Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy

  • Maryse D. Nkoua Ngavouka,
  • Pietro Capaldo,
  • Elena Ambrosetti,
  • Giacinto Scoles,
  • Loredana Casalis and
  • Pietro Parisse

Beilstein J. Nanotechnol. 2016, 7, 220–227, doi:10.3762/bjnano.7.20

Graphical Abstract
  • (nanografting) to create ssDNA nano-arrays on gold surfaces and then AFM topography measurements to monitor the variation of the height of the nanostructures after loading the complementary/mismatched strands in the liquid cell. In the last years we optimized this nanomechanical approach, which is based in the
  • remove loosely bound molecules and placed in a customised liquid cell for the AFM experiments. All AFM experiments were carried out on a XE-100 Park Instruments with a customised liquid cell. Si cantilevers (NSC36B Mikromasch, spring constant: 0.6 N/m) were used for the nanografting experiments. Briefly
  • nanografting have been properly chosen to obtain a surface density of probes optimal for the detection of target hybridization, following previous works of our group [23][24][25]. After the immobilization the ssDNA patches are measured through AFM topographic imaging in soft contact with standard silicon
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2016

Advanced atomic force microscopy techniques II

  • Thilo Glatzel,
  • Ricardo Garcia and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 2326–2327, doi:10.3762/bjnano.5.241

Graphical Abstract
  • growth of metal-organic frameworks have been created and analyzed by a nanografting technique by using an AFM as a structuring tool [10]. The effect of Cu intercalation at the interface of self-assembled monolayers and a Au(111)/mica substrate was analyzed by STM [11] as well as the growth behavior of
PDF
Editorial
Published 03 Dec 2014

Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

  • Tian Tian,
  • Burapol Singhana,
  • Lauren E. Englade-Franklin,
  • Xianglin Zhai,
  • T. Randall Lee and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2014, 5, 26–35, doi:10.3762/bjnano.5.3

Graphical Abstract
  • changes at different time intervals were captured by successive AFM images. Scanning probe based nanofabrication was accomplished using protocols of nanografting and nanoshaving with n-alkanethiols and a tridentate molecule, 1,1,1-tris(mercaptomethyl)heptadecane (TMMH). Nanografted patterns of TMMH could
  • –Au bonds to the substrate. Keywords: liquid AFM; multidentate; nanografting; nanolithography; self-assembly; Introduction Multidentate thiol-based adsorbates attach to gold surfaces through multiple bonds that provide enhanced stability to self-assembled monolayers (SAMs) [1][2]. Although detailed
  • before and after nanofabrication steps. Side-by-side comparisons of the surface structures of multidentate adsorbates versus n-alkanethiol SAMs were accomplished using nanografting to give a local measurement of film thickness, referencing the well-known dimensions of n-alkanethiols as a baseline
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2014

Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

  • Tatjana Ladnorg,
  • Alexander Welle,
  • Stefan Heißler,
  • Christof Wöll and
  • Hartmut Gliemann

Beilstein J. Nanotechnol. 2013, 4, 638–648, doi:10.3762/bjnano.4.71

Graphical Abstract
  • the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The
  • grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. Keywords: atomic force microscopy (AFM); metal-organic frameworks; nanografting; nanoshaving; SURMOF; Introduction Metal organic frameworks (MOFs) are highly crystalline three
  • fabrication of structures within SAMs [26] of higher resolution can be obtained by nanoshaving and nanografting [27] or other methods based on scanning probe microscopy techniques, e.g., atomic force microscopy (AFM) [28][29]. Both lithography methods allow for lateral structuring with resolutions down to
PDF
Album
Full Research Paper
Published 11 Oct 2013
Other Beilstein-Institut Open Science Activities