Search results

Search for "organoclays" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • interphases as those provided by organoclays [12]. Besides typical 2D layered clays, fibrous (sepiolite, palygorskite) and tubular (halloysite, imogolite) clays are attracting growing interest in the development of a large variety of functional nanomaterials and nanocomposites for application in diverse
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • @montmorillonite materials can be synthesized from a Zn solution and cetyltrimethylammonium (CTA)-montmorillonite organoclays. In these materials, the bandgap energy of ZnO is decreased compared to bare ZnO NPs, which results in a faster photodegradation of MB. In experiments to prepare ZnO@clay nanoarchitectures
  • embedded in the interlayer space of the organoclays or dispersed on its external surface. These nanomaterials can be applied as antibactericide. It has been observed that they destroy the cellular surface structure of Microcystis aeruginosa, and also inhibit the physiological activity of M. aeruginosa
  • , taking place during the heterocoagulation of hydrolyzed alkoxides previously incorporated in the surfactant–clay interface, as it was first reported by Letaïef and Ruiz-Hitzky [126][127]. In the same way, organoclays dispersed in an organic solvent can facilitate the incorporation of already formed metal
PDF
Album
Review
Published 31 May 2019

Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications

  • Marwa Akkari,
  • Pilar Aranda,
  • Abdessalem Ben Haj Amara and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1971–1982, doi:10.3762/bjnano.7.188

Graphical Abstract
  • water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants. Keywords: delamination; montmorillonite; organoclays; photocatalysis; porous clay heterostructures; sepiolite; ZnO nanoparticles; Introduction In the last decades, great effort has been
  • methodology in which it was possible to reach the delamination of layered silicates previously exchanged with long-chain alkylammonium cations (organoclays) [13]. In this way, organo-smectites and organo-vermiculites have been used to prepare a new type of nanocomposites consisting of delaminated layered
  • ]. The methodology has been also applied to organoclays derived from fibrous clays (e.g., sepiolite) in which the presence of the surfactant at the external surface results in the formation of silica NP of diverse characteristics depending on the nature of both, silane precursor and surfactant present at
PDF
Album
Full Research Paper
Published 12 Dec 2016

Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces

  • Ana C. S. Alcântara,
  • Margarita Darder,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1772–1782, doi:10.3762/bjnano.7.170

Graphical Abstract
  • examples, organoclays containing alkylammonium surfactant species [20][22] or polyethylene glycol as plasticizer [21] were required to produce the zein-based materials. Nevertheless, the process of formation of zein–montmorillonite biohybrids making use of sodium-exchanged montmorillonite (Na
  • of zein intercalation, the structure and features of the synthesized biohybrids were also analyzed. Zein-based biohybrids were further tested as reinforcing fillers of other biopolymer matrixes to probe their usefulness in the development of “fully” ecofriendly bioplastics. In fact, organoclays
  • prepared by intercalation of biomolecules such as lipids or proteins have been recently reported [23][24][25][26], resulting in so-called bio-organoclays useful as fillers in the preparation of bionanocomposites or as biointerfaces for adsorption of biological species. In the present case, the
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2016
Other Beilstein-Institut Open Science Activities