Search results

Search for "pharmacokinetics" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • and then to the in vitro Franz diffusion test with reservoir patch formulation as well as in vivo pharmacokinetics study with enteric capsules. We tested these formulations regarding their nanocrystal physical properties, size effect, and dissolution rate, respectively. We found that DCS nanocrystals
PDF
Album
Full Research Paper
Published 25 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • resistance to severe environments than the antioxidants originating from plants and animals. More interestingly, through nanoencapsulation and nanodelivery, antioxidant nanomaterials improve the pharmacokinetics of natural antioxidants by preventing their degradation under stress conditions [9][10
PDF
Album
Review
Published 12 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • nanomedicines not only improve the pharmacokinetics and safety profile of classical medicines but also display higher effectiveness [97]. This portfolio of liposomal nanomedicines is now broadening to include other than oncological drugs, such as those to prevent deadly infections or treat chronic diseases [81
  • large industrial volumes is the most challenging step in nanomedicine product development [112]. Slight structural changes induced during the industrial-scale production may modify pharmacokinetics, biodistribution, and pharmacodynamics of nanomedicines and alter their therapeutic properties and toxic
  • vicinity of target cells, signify they are bioavailable unless the drug is released or the nanomedicine is endocytosed. These factors make it difficult to determine the pharmacokinetics and biodistribution of nanomedicines. (iii) In the blood circulation, nanomedicines tend to aggregate, adsorb plasma
PDF
Album
Review
Published 27 Mar 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • NPs also helps to maintain its stability. Poly(ethylene glycol) (PEG) on the surface of NPs would serve as a brush to inhibit serum protein adsorption [4]. The PEO block of F127 shares the same core structure as PEG; hence, the emergence of a form of PEG would likewise improve the pharmacokinetics of
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • pharmacokinetics parameters. The nanoformulations were evaluated through efficacy criteria (e.g., parasite burden, egg counts, and granuloma diameter) or using traditional pharmacokinetics parameters (e.g., absorption rate or bioavailability). For example, Labib El Gendy et al. [49] showed that PZQ encapsulated in
  • liposomes (500 mg/kg) could be more efficient than free PZQ treatment. Similar results have been shown in other works that also used liposome with PZQ in different concentrations [50][51][52][53]. In addition, Xie et al. [54] studied the pharmacokinetics of solid lipid nanoparticles composed of castor oil
  • , enhancement of the dissolution rate of these drugs will present improved bioavailability [95]. Other works do not show effectiveness tests because they are focused on evaluating pharmacokinetics. Cong et al. [96] showed that PZQ nanoemulsion has sustained drug release for a long time, both in vitro and in
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • , detection, and eradication of cancer cells and biomarkers, with great potential in theranostic applications. Despite these advantages, the design and fabrication of targeted NPs for cancer therapy is still very challenging regarding biocompatibility, pharmacokinetics, in vivo targeting efficacy, and cost
PDF
Album
Review
Published 04 Sep 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • across the body. Their results agree with previous studies demonstrating that microneedles yield different penetrations depending on the injection site [24][25], whereby the closing of residual micropores and the pharmacokinetics may differ [26]. In the context of drug-loaded microneedle patches for
PDF
Album
Perspective
Published 15 Aug 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • therapeutic effectiveness, regulated pharmacokinetics, known biodistribution, and minimal side effects are being sought. The mechanism of NanoEL shows great potential for future biomedical applications, but a more thorough investigation is still required [5]. Conclusion Effective transport of NPs to the
PDF
Album
Review
Published 08 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • . However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery
PDF
Album
Review
Published 22 Feb 2023

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • and a positive surface charge. The former is very important for the pharmacokinetics of nanoparticles and needed for long blood circulation time, especially when a molecular targeting is aimed [36][37][38]. The latter is essential for the highly popular gene therapy, especially in the treatment of
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • side effects of conventional therapeutic agents [4]. Functionalized nanoparticles have the potential to improve the therapeutic performance of drugs by regulating pharmacokinetics and pharmacodynamics [5]. Moreover, water compatibility of nanocarriers provides better chemical stability and
PDF
Album
Full Research Paper
Published 02 Dec 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • the center-stage in drug delivery applications, wherein they can improve drug pharmacokinetics and pharmacodynamics and may also increase drug accumulation in both animal cells and bacteria, proving beneficial to overcome drug resistance [1][2]. Iron oxide nanoparticles (IONPs), due to their
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • ]. In addition to the previous data, it should be stated that coadministration of CUR with another anticancer molecule may also serve to complement or potentiate its effects. The use of a single delivery system will also normalize any differences in the pharmacokinetics of co-encapsulated drugs that are
  • toxicity, and extending product life cycles [7]. Moreover, they can enhance the therapeutic index and pharmacokinetics of several compounds [40]. This is due to their nanoranged size and the possibility of modifications that can make them able to cross biological barriers to reach a specific target organ
  • , cell, or organelle, improving solubility, dissolution rate, and pharmacokinetics [5]. In the case of CUR, the nanosystem size directly influences its biodistribution as demonstrated by Bi et al. [41], who reported differences in the pharmacokinetic profiles when they administered CUR nanosuspension of
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • mechanisms and increasing the overall therapeutic effect. Still, it is challenging to coordinate pharmacokinetics, biodistribution, and intracellular concentration profiles of individual drugs with different physiochemical and biological properties [57][58]. Hence, current clinical combinatorial therapy
PDF
Album
Review
Published 29 Apr 2021

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • into the core of the nanoparticles gives the possibility to solubilize and protect the sensitive drugs or contrast agents [2][4][5]. Their pharmacokinetics, including the distribution from the blood stream into the tissue, depend mainly on the size and shape, the surface composition, the charge as well
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • PDT. Block copolymer nanoassemblies offer the unique possibility to protect the photosensitizer in a hydrophobic environment (as described in Figure 3) and to prevent the aggregation. At the same time, they improve the biodistribution, pharmacokinetics and photochemical reactivity of the
PDF
Album
Review
Published 15 Jan 2020

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • by cholesterol have been substantially investigated as drug carriers for targeting, modulating drug pharmacokinetics, and decreasing drug toxicity [15][16]. Liposomes also can be used as solubilizing media to enhance solubility and bioavailability of insoluble drugs [17]. Di and our prepared
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: Physical characteristics, encapsulation efficacy, and drug release

  • Mohammad A. Obeid,
  • Ibrahim Khadra,
  • Abdullah Albaloushi,
  • Margaret Mullin,
  • Hanin Alyamani and
  • Valerie A. Ferro

Beilstein J. Nanotechnol. 2019, 10, 1826–1832, doi:10.3762/bjnano.10.177

Graphical Abstract
  • [6]. The use of nanoparticles as drug delivery systems is currently a corner stone in the field of drug delivery in order to improve the pharmacokinetics and pharmacodynamics of many drugs that have limitations in bioavailability [7]. Therefore, to improve the curcumin characteristics, nanoparticles
PDF
Album
Full Research Paper
Published 05 Sep 2019

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • surfaces are often used for biomedical applications (e.g., biosensing, hyperthermia and MRI) [10]. In biomedical applications, the morphology of the nanoparticle significantly influences both pharmacokinetics and cell uptake [11]. Nanoparticles are also preferred as fillers for polymers to induce certain
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

  • Huijuan Zhang,
  • Fuqiang Wu,
  • Yazhen Li,
  • Xiping Yang,
  • Jiamei Huang,
  • Tingting Lv,
  • Yingying Zhang,
  • Jianzhong Chen,
  • Haijun Chen,
  • Yu Gao,
  • Guannan Liu and
  • Lee Jia

Beilstein J. Nanotechnol. 2016, 7, 1861–1870, doi:10.3762/bjnano.7.178

Graphical Abstract
  • curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability. Keywords: anticancer; chitosan; drug delivery; mifepristone; nanoparticles; pharmacokinetics; sustained
  • plasma concentration (Tmax) are presented in Table 1. The large error bars in the pharmacokinetics curve MCNs indicated that there are great individual differences in the disposition of MCNs. The statistical analysis indicated that significant differences in AUC0−t between MCNs and the MIF suspension
PDF
Album
Full Research Paper
Published 28 Nov 2016

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • combination of nanoparticles with these two stem cell types derived from the bone marrow is very promising not only for labelling to monitor biodistribution and migration of stem cells but also to establish the “pharmacokinetics” of such cellular therapeutics. Furthermore, such nanoparticles can be
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • resistance and cannot be applied orally. Such drugs could be encapsulated within nanoparticles protecting the drug, generating a new hydrophilic surface, improving pharmacokinetics and targeting the drug to distinct cells and tissues This would enable a reduction of the drug dosage thereby improving the
  • living cells. The biological effects of nanoparticles depend not only on the particle material and their size, but to a great extent also on the surface chemistry of the particles. Surface functionalization of nanoparticles is crucial for their pharmacokinetics, biocompatibility, and tissue and cell
PDF
Album
Review
Published 15 Dec 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • pharmacokinetics and biodistribution of IR820-PGMD NPs [24]. The present manuscript concentrates primarily on the in vitro response of cancer cells after hyperthermia. Therefore, this paper focuses not only on the cancer imaging and therapy capabilities of IR820-PGMD NPs, but also on exploring the cellular
  • compared to the free form [24]. Our release kinetics and pharmacokinetics study results [24] seem to indicate that the NP formulation stabilizes IR820, protecting it from degradation and allowing for longer detection windows. Discussion The MW of PGMD polymer is 3000 Da, which is expected for polymers
  • improved plasma circulation time and protect the loading agent from degradation, which would explain the higher intensities observed in vivo when comparing the NP form with the free dye [29][30]. Our pharmacokinetics study showed that IR820-PGMD NPs administration results in significantly increased IR820
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014
Other Beilstein-Institut Open Science Activities